
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01009-2014.08.18

User Guide

RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core

Document last updated for Altera Complete Design Suite version:
Document publication date:

14.0a10
August 2014

Subscribe

RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core
User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01009

RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

August 2014 Altera Corporation
1. About this IP Core
This document describes the Altera-provided a RAM-based shift register
(ALTSHIFT_TAPS) megafunction IP core. This IP core contains features not found in a
conventional shift register. Traditional shift registers implemented with standard flip-
flops use many logic cells for large shift registers. The ALTSHIFT_TAPS IP core is
implemented in the device memory blocks, saving logic cells and routing resources. In
a complicated design such as a digital signal processing (DSP) application that
requires local data storage, it is more efficient to implement an ALTSHIFT_TAPS IP
core as the shift register.

The ALTSHIFT_TAPS IP core is a parameterized shift register with taps. The taps
provide data outputs from the shift register at certain points in the shift register chain.
You can add additional logic that uses the output from these taps for further
applications. The IP core’s output tap feature is useful for applications such as the
Linear Feedback Shift Register (LFSR) and Finite Impulse Response (FIR) filters.

Features
The ALTSHIFT_TAPS IP core implements a shift register with taps and offers
additional features, which include:

■ Selectable RAM block type

■ A wide range of widths for the shiftin and shiftout ports

■ Support for output taps at certain points in the shift register chain

■ Selectable distance between taps

General Description
Use the IP Catalog (Tools > IP Catalog) and parameter editor to easily configure the
IP core. The ALTSHIFT_TAPS IP core is implemented in the embedded memory block
of all supported device families with simple dual-port RAM. You can select the RAM
block type according to the capacity you require. The capacity that is represented by
the width and the depth of the memory block depends on the TAP_DISTANCE,
NUMBER_OF_TAPS, and WIDTH parameters of the ALTSHIFT_TAPS IP core.

f For the features and capacities of the typical memory block, refer to the chapter of
your device handbook that contains information about TriMatrix embedded memory
blocks.

The ALTSHIFT_TAPS IP core supports single-bit and multiple-bit data shifting at one
clock cycle, depending on the width of the shiftin and shiftout ports. For example,
if the shiftin and shiftout ports are single-bit data, only one bit is shifted per clock
cycle. If the shiftin and shiftout ports are multiple-bit data, such as one-word data
(8-bit), the whole word is shifted per clock cycle.
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

1–2 Chapter 1: About this IP Core
General Description
The IP core also supports output taps at certain points in the shift register chain, but
the tap points must be evenly spaced. You set the space between taps in the parameter
editor.

Figure (a) in Figure 1–1 shows a traditional 12-word-depth shift register. Figure (b)
shows how the data in the shift register chain are being tapped at even spaces (1st,
4th, 7th, and 10th) at the output taps of the ALTSHIFT_TAPS IP core.

Figure 1–1. Tapping Data at Certain Points of the Shift Register Chain (Note 1), (2), (3)

Notes for Figure 1–1

(1) The ALTSHIFT_TAPS IP core depicted here has TAP_DISTANCE = 3 and NUMBER_OF_TAPS = 4.
(2) The tapped data is output to taps[31..0]. Note that taps[31..0] is a 32-bit output because it taps four words at one time. The first word from

the MSB of the taps (taps[31..24]) represents the first data and is followed by the 4th data, 7th data, and 10th data.
(3) The shiftout[7..0] word is equivalent to taps[31..24].
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

August 2014 Altera Corporation
2. Using Altera IP Cores
Installing and Licensing IP Cores
The Altera IP Library provides many useful IP core functions for production use
without purchasing an additional license. You can evaluate any Altera IP core in
simulation and compilation in the Quartus II software using the OpenCore evaluation
feature.

Some Altera IP cores, such as MegaCore® functions, require that you purchase a
separate license for production use. You can use the OpenCore Plus feature to
evaluate IP that requires purchase of an additional license until you are satisfied with
the functionality and performance. After you purchase a license, visit the Self Service
Licensing Center to obtain a license number for any Altera product. For additional
information, refer to Altera Software Installation and Licensing.

1 The default installation directory on Windows is <drive>:\altera\<version number>;
on Linux it is <home directory>/altera/<version number>.

IP Catalog and Parameter Editor
The Quartus II IP Catalog (Tools > IP Catalog) and parameter editor help you easily
customize and integrate IP cores into your project. You can use the IP Catalog and
parameter editor to select, customize, and generate files representing your custom IP
variation.

1 The IP Catalog (Tools > IP Catalog) and parameter editor replace the MegaWizard™
Plug-In Manager for IP selection and parameterization, beginning in Quartus II
software version 14.0. Use the IP Catalog and parameter editor to locate and
paramaterize Altera IP cores.

The IP Catalog lists IP cores available for your design. Double-click any IP core to
launch the parameter editor and generate files representing your IP variation. The
parameter editor prompts you to specify an IP variation name, optional ports, and
output file generation options. The parameter editor generates a top level Qsys
system file (.qsys) or Quartus II IP file (.qip) representing the IP core in your project.
You can also parameterize an IP variation without an open project.

Use the following features to help you quickly locate and select an IP core:

■ Filter IP Catalog to Show IP for active device family or Show IP for all device
families.

Figure 2–1. IP core Installation Path

acds

quartus - Contains the Quartus II software

ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code

<IP core name> - Contains the IP core source files
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

http://www.altera.com/licensing
http://www.altera.com/licensing
http://www.altera.com/literature/manual/quartus_install.pdf

2–2 Chapter 2: Using Altera IP Cores
Using the Parameter Editor
■ Search to locate any full or partial IP core name in IP Catalog. Click Search for
Partner IP, to access partner IP information on the Altera website.

■ Right-click an IP core name in IP Catalog to display details about supported
devices, installation location, and links to documentation.

1 The IP Catalog is also available in Qsys (View > IP Catalog). The Qsys IP Catalog
includes exclusive system interconnect, video and image processing, and other
system-level IP that are not available in the Quartus II IP Catalog.

Using the Parameter Editor
The parameter editor helps you to configure your IP variation ports, parameters,
architecture features, and output file generation options:

■ Use preset settings in the parameter editor (where provided) to instantly apply
preset parameter values for specific applications.

■ View port and parameter descriptions and links to detailed documentation.

Figure 2–2. Quartus II IP Catalog

Search and filter IP for your target device

Double-click to customize, right-click for information
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 2: Using Altera IP Cores 2–3
Specifying IP Core Parameters and Options
■ Generate testbench systems or example designs (where provided).

Specifying IP Core Parameters and Options
The parameter editor GUI allows you to quickly configure your custom IP variation.
Use the following steps to specify IP core options and parameters in the Quartus II
software. Refer to Specifying IP Core Parameters and Options (Legacy Parameter
Editors) for configuration of IP cores using the legacy parameter editor.

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP
core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. The parameter editor saves
the IP variation settings in a file named .<your_ip>qsys. Click OK.

3. Specify the parameters and options for your IP variation in the parameter editor,
including one or more of the following. Refer to your IP core user guide for
information about specific IP core parameters.

■ Optionally select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

■ Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

■ Specify options for processing the IP core files in other EDA tools.

4. Click Generate HDL, the Generation dialog box appears.

5. Specify output file generation options, and then click Generate. The IP variation
files generate according to your specifications.

6. To generate a simulation testbench, click Generate > Generate Testbench System.

7. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate > HDL Example.

Figure 2–3. IP Parameter Editors

View IP port
and parameter
details

Apply preset parameters for
specific applications

Specify your IP variation name
and target device

Legacy parameter
editors
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

2–4 Chapter 2: Using Altera IP Cores
Specifying IP Core Parameters and Options
8. Click Finish. The parameter editor adds the top-level .qsys file to the current
project automatically. If you are prompted to manually add the .qsys file to the
project, click Project > Add/Remove Files in Project to add the file.

9. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

f For information about using a legacy parameter editor, refer to “Specifying IP Core
Parameters and Options (Legacy Parameter Editors)” in the Introduction to Altera IP
Cores.
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

Chapter 2: Using Altera IP Cores 2–5
Files Generated for Altera IP Cores
Files Generated for Altera IP Cores
The Quartus II software version 14.0 Arria 10 Edition and later generates the
following output file structure for Altera IP cores.

Figure 2–4. IP Core Generated Files

Table 2–1. IP Core Generated Files (version 14.0a10)

File Type Description

<my_ip>.qsys The Qsys system or top-level IP variation file. <my_ip> is the name that you
give your IP variation.

<system>.sopcinfo

Describes the connections and IP component parameterizations in your
Qsys system. You can parse its contents to get requirements when you
develop software drivers for IP components.

Downstream tools such as the Nios II tool chain use this file. The .sopcinfo
file and the system.h file generated for the Nios II tool chain include
address map information for each slave relative to each master that
accesses the slave. Different masters may have a different address map to
access a particular slave component.

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains
local generic and port definitions that you can use in VHDL design files.

<my_ip>.html
A report that contains connection information, a memory map showing the
address of each slave with respect to each master to which it is connected,
and parameter assignments.

<your_testbench>_tb.csv

<your_testbench>_tb.spd

<your_ip>.cmp - VHDL component declaration file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.qip - Lists IP synthesis files

<your_ip>.sip - Lists files for simulation

<your_ip>.v or .vhd
Top-level IP synthesis file

<your_ip>.v or .vhd
Top-level simulation file

<simulator_setup_scripts>

<your_ip>.qsys - System or IP integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>_generation.rpt - IP generation report

<your_ip>.debuginfo - Contains post-generation information
<your_ip>.html - Connection and memory map data

<your_ip>.bsf - Block symbol schematic
<your_ip>.spd - Combines individual simulation scripts

<your_ip>_tb.qsys
Testbench system file

<your_ip>.sopcinfo - Software tool-chain integration file

<project directory>

<EDA tool setup
scripts>

<your_ip>

IP variation files
<testbench>_tb

testbench system

sim

Simulation files

synth

IP synthesis files

sim
simulation files

<EDA tool name>
Simulator scripts

<testbench>_tb

<ip subcores> n
Subcore libraries

sim
Subcore

Simulation files

synth
Subcore

synthesis files

<HDL files><HDL files>

<your_ip> n

IP variation files

testbench files
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

2–6 Chapter 2: Using Altera IP Cores
Files Generated for Altera IP Cores
<my_ip>_generation
.rpt

IP or Qsys generation log file. A summary of the messages during IP
generation.

<my_ip>.debuginfo

Contains post-generation information. Used to pass System Console and
Bus Analyzer Toolkit information about the Qsys interconnect. The Bus
Analysis Toolkit uses this file to identify debug components in the Qsys
interconnect.

<my_ip>.qip Contains all the required information about the IP component to integrate
and compile the IP component in the Quartus II software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

<my_ip>.bsf A Block Symbol File (.bsf) representation of the IP variation for use in
Quartus II Block Diagram Files (.bdf).

<my_ip>.spd
Required input file for ip-make-simscript to generate simulation scripts
for supported simulators. The .spd file contains a list of files generated for
simulation, along with information about memories that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components created for use with the Pin Planner.

<my_ip>_bb.v You can use the Verilog black-box (_bb.v) file as an empty module
declaration for use as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP components.
You must add the .sip file to your Quartus II project.

<my_ip>_inst.v or
_inst.vhd

HDL example instantiation template. You can copy and paste the contents
of this file into your HDL file to instantiate the IP variation.

<my_ip>.regmap

If IP contains register information, .regmap file generates. The .regmap file
describes the register map information of master and slave interfaces. This
file complements the .sopcinfo file by providing more detailed register
information about the system. This enables register display views and user
customizable statistics in the System Console.

<my_ip>.svd

Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Qsys system.

During synthesis, the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section. System
Console reads this section, which Qsys can query for register map
information. For system slaves, Qsys can access the registers by name.

<my_ip>.v

or

<my_ip>.vhd

HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a ModelSim® script msim_setup.tcl to set up and run a
simulation.

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS® simulation.

Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set
up and run a VCS MX® simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/submodules Contains submodule HDL files and /sim and /synth directories.

Table 2–1. IP Core Generated Files (version 14.0a10)

File Type Description
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 2: Using Altera IP Cores 2–7
Specifying IP Core Parameters and Options (Legacy Parameter Editors)
Specifying IP Core Parameters and Options (Legacy Parameter Editors)
The Quartus II software version 14.0 and previous uses a legacy version of the
parameter editor for IP core configuration and generation. Use the following steps to
configure and generate an IP variation using a legacy parameter editor.

1 The legacy parameter editor generates a different output file structure than the latest
parameter editor. Refer to Specifying IP Core Parameters and Options for
configuration of IP cores in the Quartus II software version 14.0a10 and later.

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP
core to customize. The parameter editor appears.

2. Specify a top-level name and output HDL file type for your IP variation. This
name identifies the IP core variation files in your project. Click OK.

3. Specify the parameters and options for your IP variation in the parameter editor.
Refer to your IP core user guide for information about specific IP core parameters.

4. Click Finish or Generate (depending on the parameter editor version). The
parameter editor generates the files for your IP variation according to your
specifications. Click Exit if prompted when generation is complete. The parameter
editor adds the top-level .qip file to the current project automatically.

1 To manually add an IP variation generated with legacy parameter editor to a project,
click Project > Add/Remove Files in Project and add the IP variation .qip file.

f For information about using the latest parameter editor, refer to “Specifying IP Core
Parameters and Options” in the Introduction to Altera IP Cores.

Figure 2–5. Legacy Parameter Editors

Legacy parameter
editors
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf

2–8 Chapter 2: Using Altera IP Cores
Upgrading Outdated IP Cores
Files Generated for Altera IP Cores (Legacy Parameter
Editor)

The Quartus II software version 14.0 and previous parameter editor generates the
following output file structure for Altera IP cores:

Modifying an IP Variation

You can easily modify the parameters of any Altera IP core variation in the parameter
editor to match your design requirements. Use any of the following methods to
modify an IP variation in the parameter editor.

Upgrading Outdated IP Cores
IP core variants generated with a previous version of the Quartus II software may
require upgrading before use in the current version of the Quartus II software. Click
Project > Upgrade IP Components to identify and upgrade IP core variants.

Figure 2–6. IP Core Generated Files (Legacy Parameter Editor)

Table 2–2. Modifying an IP Variation

Menu Command Action

File > Open
Select the top-levelHDL(.v, or .vhd) IP variation file to
launch the parameter editor and modify the IP variation.
Regenerate the IP variation to implement your changes.

View > Utility Windows >
Project Navigator > IP Components

Double-click the IP variation to launch the parameter
editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

Project > Upgrade IP Components
Select the IP variation and click Upgrade in Editor to
launch the parameter editor and modify the IP variation.
Regenerate the IP variation to implement your changes.

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated
3. Ignore this directory

<Project Directory>

<your_ip>.v or .vhd - Top-level IP synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>.bsf - Block symbol schematic file

<your_ip>.vo or .vho - IP functional simulation model 2
<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qip - Quartus II IP integration file

greybox_tmp 3

<your_ip>.cmp - VHDL component declaration file
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 2: Using Altera IP Cores 2–9
Upgrading Outdated IP Cores
The Upgrade IP Components dialog box provides instructions when IP upgrade is
required, optional, or unsupported for specific IP cores in your design. You must
upgrade IP cores that require it before you can compile the IP variation in the current
version of the Quartus II software. Many Altera IP cores support automatic upgrade.

The upgrade process renames and preserves the existing variation file (.v, .sv, or .vhd)
as <my_ip>_ BAK.v, .sv, .vhd in the project directory.

Before you begin

■ Archive the Quartus II project containing outdated IP cores in the original version
of the Quartus II software: Click Project > Archive Project to save the project in
your previous version of the Quartus II software. This archive preserves your
original design source and project files.

■ Restore the archived project in the latest version of the Quartus II software: Click
Project > Restore Archived Project. Click OK if prompted to change to a
supported device or overwrite the project database. File paths in the archive must
be relative to the project directory. File paths in the archive must reference the IP
variation .v or .vhd file or .qsys file (not the .qip file).

1. In the latest version of the Quartus II software, open the Quartus II project
containing an outdated IP core variation. The Upgrade IP Components dialog
automatically displays the status of IP cores in your project, along with
instructions for upgrading each core. Click Project > Upgrade IP Components to
access this dialog box manually.

Table 2–3. IP Core Upgrade Status

IP Core Status Corrective Action

Required Upgrade IP
Components

You must upgrade the IP variation before compiling in the current
version of the Quartus II software.

Optional Upgrade IP
Components

Upgrade is optional for this IP variation in the current version of the
Quartus II software. You can upgrade this IP variation to take
advantage of the latest development of this IP core. Alternatively you
can retain previous IP core characteristics by declining to upgrade.

Upgrade Unsupported

Upgrade of the IP variation is not supported in the current version of
the Quartus II software due to IP core end of life or incompatibility
with the current version of the Quartus II software. You are prompted
to replace the obsolete IP core with a current equivalent IP core from
the IP Catalog.
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

2–10 Chapter 2: Using Altera IP Cores
Upgrading Outdated IP Cores
2. To simultaneously upgrade all IP cores that support automatic upgrade, click
Perform Automatic Upgrade. The Status and Version columns update when
upgrade is complete. Example designs provided with any Altera IP core
regenerate automatically whenever you upgrade the IP core.

Upgrading IP Cores at the Command Line
You can upgrade IP cores that support auto upgrade at the command line. IP cores
that do not support automatic upgrade do not support command line upgrade.

■ To upgrade a single IP core that supports auto-upgrade, type the following
command:
quartus_sh –ip_upgrade –variation_files <my_ip_filepath/my_ip>.<hdl>
<qii_project>
Example: quartus_sh -ip_upgrade -variation_files mega/pll25.v hps_testx

■ To simultaneously upgrade multiple IP cores that support auto-upgrade, type the
following command:
quartus_sh –ip_upgrade –variation_files “<my_ip_filepath/my_ip1>.<hdl>;
<my_ip_filepath/my_ip2>.<hdl>” <qii_project>
Example: quartus_sh -ip_upgrade -variation_files
"mega/pll_tx2.v;mega/pll3.v" hps_testx

f IP cores older than Quartus II software version 12.0 do not support upgrade. Altera
verifies that the current version of the Quartus II software compiles the previous
version of each IP core. The MegaCore IP Library Release Notes reports any verification
exceptions for MegaCore IP. The Quartus II Software and Device Support Release Notes
reports any verification exceptions for other IP cores. Altera does not verify
compilation for IP cores older than the previous two releases.

Figure 2–7. Upgrading IP Cores

Displays upgrade
status for all IP cores
in the Project

Upgrades all IP core that support “Auto Upgrade”
Upgrades individual IP cores unsupported by “Auto Upgrade”

Checked IP cores
support “Auto Upgrade”

Successful
“Auto Upgrade”

Upgrade
unavailable

Double-click to
individually migrate
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_qts_dev_support.pdf

Chapter 2: Using Altera IP Cores 2–11
Migrating IP Cores to a Different Device
Migrating IP Cores to a Different Device
IP migration allows you to target the latest device families with IP originally
generated for a different device. Some Altera IP cores require individual migration to
upgrade. The Upgrade IP Components dialog box prompts you to double-click IP
cores that require individual migration.

1. To display IP cores requiring migration, click Project > Upgrade IP Components.
The Description field prompts you to double-click IP cores that require individual
migration.

2. Double-click the IP core name, and then click OK after reading the information
panel. The parameter editor appears showing the original IP core parameters.

3. For the Currently selected device family, turn off Match project/default, and then
select the new target device family.

4. Click Finish, and then click Finish again to migrate the IP variation using best-
effort mapping to new parameters and settings. Click OK if you are prompted that
the IP core is unsupported for the current device. A new parameter editor opens
displaying best-effort mapped parameters.

5. Click Generate HDL, and then confirm the Synthesis and Simulation file options.
Verilog is the parameter editor default HDL for synthesis files. If your original IP
core was generated for VHDL, select VHDL to retain the original output HDL
format.

6. To regenerate the new IP variation for the new target device, click Generate. When
generation is complete, click Close.

7. Click Finish to complete migration of the IP core. Click OK if you are prompted to
overwrite IP core files. The Device Family column displays the migrated device
support. The migration process replaces <my_ip>.qip with the <my_ip>.qsys top-
level IP file in your project.

1 If migration does not replace <my_ip>.qip with <my_ip>.qsys, click Project
> Add/Remove Files in Project to replace the file in your project.

8. Review the latest parameters in the parameter editor or generated HDL for
correctness. IP migration may change ports, parameters, or functionality of the IP
core. During migration, the IP core's HDL generates into a library that is different
from the original output location of the IP core. Update any assignments that
reference outdated locations. If your upgraded IP core is represented by a symbol
in a supporting Block Design File schematic, replace the symbol with the newly
generated <my_ip>.bsf after migration.

1 The migration process may change the IP variation interface, parameters, and
functionality. This may require you to change your design or to re-parameterize your
variant after the Upgrade IP Components dialog box indicates that migration is
complete. The Description field identifies IP cores that require design or parameter
changes.

f For more information about specific IP cores, refer to IP user guide documentation
and the Altera IP Release Notes.
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/rn/rn_ip.pdf

2–12 Chapter 2: Using Altera IP Cores
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

August 2014 Altera Corporation
3. Parameter Settings
The following table shows the parameter settings available for this IP core:

Table 3–1. Shift Register (RAM-based) Parameters

Configuration Setting Description

How wide should the ‘shiftin’ input and the ‘shiftout’
output buses be?

Specify the width of the data input and output buses. This
value is represented by the term w in the Shift Register
Memory Configuration.

How many taps would you like? Specify the number of taps. This value is represented by the
term n in the Shift Register Memory Configuration.

Create groups for each tap output Turn on this option to create separate groups for output data
tapped from the register chain. (3)

How wide should the distance between taps be?
Specify the distance between taps. This value is represented
by the term m in the Shift Register Memory Configuration.
(4)

Create a clock enable port
Turn on this option to create an enable signal for register
ports. The register ports are always enabled if this option is
not turned on. (5)

Create an asynchronous clear port
Turn on this option to create an asynchronous clear signal.
When asserted, the outputs of the shift register are
immediately cleared.

What should the RAM block type be?
Choose the type of memory block that supports the feature,
memory configuration, and capacity for your application.
(6)

Notes for Table 3–1

(1) The widths of the shiftin input bus and shiftout output bus are identical, and they are not registered. However, the output data can be
considered synchronous with the clock because the internal read address to the memory block is synchronous to the clock.

(2) The width of the output taps is the multiplication of w (width of input data) and n (number of taps). Also, the word from the MSB of the output
taps is equivalent to the shiftout output bus.

(3) The combination of these groups represent the taps[wn-1:0] bus.
(4) The distance between taps, m, must be at least 3.
(5) The registered port is referred to as the internal register at the memory address ports. The shiftin and shiftout ports are not registered.
(6) For information about the chosen memory block type, refer to the TriMatrix Embedded Memory Block chapter of your target device handbook.

You can also choose AUTO if you are not particular about the RAM block type used. With the AUTO option, the memory block type is determined
by the Quartus II software synthesizer or Fitter at compile time. To determine the type of memory block used, check the Quartus II Fitter Report.
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

3–2 Chapter 3: Parameter Settings
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

August 2014 Altera Corporation
4. Specifications
This chapter describes the prototypes, declarations, ports, and parameters of the
ALTSHIFT_TAPS IP core. You can use the ports and parameters to customize the
ALTSHIFT_TAPS IP core according to your application.

Verilog HDL Prototype for the ALTSHIFT_TAPS
You can locate the following Verilog HDL prototype in the Verilog Design File (.v)
altera_mf.v in the <Quartus II installation directory>\eda\synthesis directory.

module altshift_taps
#(parameter intended_device_family = “unused”,

parameter number of taps = 1,
parameter power_up_state = “CLEARED”,
parameter taps_distance = 1,
parameter width = 1,
parameter lpm_type = “altshift_taps”,
parameter lpm_hint = “unused”)

(input wire aclr,
input wire clken,
input wire clock,
input wire [width-1:0] shiftin,
output wire [width-1:0] shiftout,
output wire [width*number_of_taps-1:0] taps)/*synthesis syn_black_box=1 */;

endmodule \\altshift_taps

VHDL Component Declaration for the ALTSHIFT_TAPS
You can locate the following VHDL Design File (.vhd) altera_mf.vhd in the
<Quartus II installation directory>\libraries\bhdl\altera_mf directory.

component altshift_taps
generic (

intended_device_family : string := “unused”;
number_of_taps : natural;
power_up_state : string := “CLEARED”;
tap_distance : natural;
width : natural;
lpm_hint : string := “UNUSED”;
lpm_type : string := “altshift_taps”

);
port(

aclr : in std_logic := ‘0’;
clken : in std_logic := ‘1’;
clock : in std_logic;
shiftin: in std_logic_vector(width-1 downto 0);
shiftout : out std_logic_vector(width-1 downto 0);
taps : out std_logic_vector(width*number_of_taps-1 downto 0)

);
end component;
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

4–2 Chapter 4: Specifications
VHDL Library-Use Declaration
VHDL Library-Use Declaration
The VHDL LIBRARY-USE declaration is not required if you use the VHDL
component declaration.

LIBRARY alterea_mf;
USE altera_mf.altera_mf_components.all;

Ports and Parameters for the ALTSHIFT_TAPS
Figure 4–1 below shows the ports and parameters for the ALTSHIFT_TAPS IP core.

The parameter details are only relevant when implementing the IP core directly in
HDL.

Table 4–1 shows the input ports of the ALTSHIFT_TAPS IP core.

Table 4–2 shows the output ports of the ALTSHIFT_TAPS IP core.

Figure 4–1. Shift Register (RAM-based) Ports and Parameters

Table 4–1. Shift Register (RAM-based) Input Ports

Name Required Description

shiftin[] Yes Data input to the shifter. Input port WIDTH bits wide.

clock Yes Positive-edge triggered clock.

clken No Clock enable for the clock port. clken defaults to VCC.

aclr No Asynchronously clears the contents of the shift register chain. The shiftout outputs are
cleared immediately upon the assertion of the aclr signal.

Table 4–2. Shift Register (RAM-based) Output Ports

Name Required Description

shiftout[] Yes Output from the end of the shift register. Output port WIDTH bits wide.

taps[] Yes
Output from the regularly spaced taps along the shift register. Output port WIDTH *
NUMBER_OF_TAPS wide. This port is an aggregate of all the regularly spaced taps (each
WIDTH bits) along the shift register.
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 4: Specifications 4–3
Ports and Parameters for the ALTSHIFT_TAPS
Table 4–3 shows the ALTSHIFT_TAPS IP core parameters.

Table 4–3. Shift Register (RAM-based) Parameters

Name Type Required Description

NUMBER_OF_TAPS Integer Yes Specifies the number of regularly spaced taps along the shift register.

TAP_DISTANCE Integer Yes
Specifies the distance between the regularly spaced taps in clock cycles.
This number translates to the number of RAM words that will be used.
TAP_DISTANCE must be at least 3.

WIDTH Integer Yes Specifies the width of the input pattern.

POWER_UP_STATE String No

Specifies the shift register contents at power-up. Values are CLEARED and
DONT_CARE. If omitted, the default is CLEARED.

Value Description

CLEARED
Zero content. For Stratix and
Stratix II device families, you must
use M512 or M4K RAM blocks.

DONT_CARE
Unknown contents. M-RAM blocks
can be used with this setting.
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

4–4 Chapter 4: Specifications
Ports and Parameters for the ALTSHIFT_TAPS
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

August 2014 Altera Corporation
5. Design Example
Design Example: Shift Register with Taps
The objective of this design example is to implement and instantiate an
ALTSHIFT_TAPS IP core using the IP Catalog and parameter editor. This example
uses a shift register with a data width, w, of 8 bits, a taps distance, m, of 3, and the
number of taps, n, equal to 4. It also demonstrates how you can tap the data at specific
points from the shift register chain.

Design Files
The example design files are available in the User Guides section on the Literature
page of the Altera® website (www.altera.com).

Configuration Settings
Refer to Chapter 2, Using Altera IP Cores to define a shift register function with the
following parameters.

Functional Simulation in the ModelSim-Altera Simulator
Simulate the design in the ModelSim®-Altera software to generate a waveform
display of the device behavior.

You should be familiar with the ModelSim-Altera software before trying the design
example. If you are unfamiliar with the ModelSim-Altera software, refer to the
support page for software products on the Altera website (www.altera.com). On the
support page, there are links to such topics as installation, usage, and troubleshooting.

Set up and simulate the design in the ModelSim-Altera software by performing the
following steps.

1. Unzip the DE_ALTSHIFT_TAPS.zip file to any working directory on your PC.

2. Start the ModelSim-Altera software.

3. On the File menu, click Change Directory.

Table 5–1. Shift Register (RAM-Based) Configuration Settings

Configuration Setting Value

How wide should the ‘shiftin’ input and the ‘shiftout’
output buses be? 8 bits

How many taps would you like? 4

Create groups for each tap output Selected

How wide should the distance between taps be? 3

Create a clock enable port Selected

Create an asynchronous clear port Selected

What should the RAM block type be? Auto
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

www.altera.com
www.altera.com

5–2 Chapter 5: Design Example
Design Example: Shift Register with Taps
4. Select the folder in which you unzipped the files.

5. Click OK.

6. On the Tools menu, click Execute Macro.

7. Select the DE_ALTSHIFT_TAPS.do file and click Open. The
DE_ALTSHIFT_TAPS.do file is a script file for the ModelSim-Altera software to
automate all the necessary settings for the simulation.

View the simulation results in the Wave window. Figure 5–1 shows the expected
simulation results in the ModelSim-Altera software.

Understanding the Simulation Results
In this example, you configured the shift register to have the following properties:

■ 8-bit data width

■ Distance between taps (taps length) equals to 3

■ Number of taps equals to 4

■ Created groups for each tap output

■ Created a clock-enable signal and an asynchronous-clear signal

This example shows how you can tap the 1st-4th-7th-10th data words simultaneously
(followed by the 2nd-5th-8th-11th and 3rd-6th-9th-12th) when all 12 words of data are
shifted into the shift register.

Figure 5–2 shows the shift register chain that is analogous to the configuration you set
in the ALTSHIFT_TAPS IP core in this example.

Figure 5–1. Simulation Waveform for Shift Register with Taps Design Example

Figure 5–2. Shift Register Chain Analogy to Configured ALTSHIFT_TAPS
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 5: Design Example 5–3
Design Example: Shift Register with Taps
The next section uses this shift register chain to explain the shifting operation and the
output operation of the ALTSHIFT_TAPS IP core.

Figure 5–3 shows the first three data words written into the shift register chain, shifted
in the register chain, and the first data shown at the taps0x output.

At 5 ns, the clken signal is low and therefore no operation is executed. You can
consider 15 ns to be the first rising clock edge, as this is when the operation begins.
The first data F8 is shifted into the shift register as shown in Figure 5–4. All outputs
show 00 because no data is being shifted to any of the outputs.

At 25 ns and 35 ns, the second data B8 and the third data D0 are shifted into the shift
register, respectively.

1 The existing data in the shift register chain are shifted right before the shift-in of new
data.

Figure 5–5 shows the content in the shift register chain at 35 ns. All of the outputs
show 00 except taps0x, which shows the first data, F8.

Figure 5–3. First Three Data Written and Shifted in the Shift Register

Figure 5–4. Content of the Shift Register Chain at 15 ns
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

5–4 Chapter 5: Design Example
Design Example: Shift Register with Taps
1 None of the input and output data ports are registered. Only the address ports of the
memory block within the shift register are registered. Therefore, when the data are
shifted to any of the output ports, the data are shown immediately at the respective
output ports.

Figure 5–6 shows the data-shifting and output-tapping from the shift register chain at
evenly-spaced intervals.

At 45 ns, the first data F8 is shifted to the next row of taps and the second data B8 is
shifted to taps0x, as shown in Figure 5–7. Other output ports continue to show 00.
Also, at the same rising clock edge, the new data 13 is shifted into the shift register.

Figure 5–5. Content of the Shift Register Chain at 35 ns

Figure 5–6. Data-Shifting and Output-Tapping

Figure 5–7. Content of the Shift Register Chain at 45 ns
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

Chapter 5: Design Example 5–5
Design Example: Shift Register with Taps
At 65 ns, the first data F8, and the fourth data 13 are shifted to taps1x and taps0x,
respectively. At 95 ns, the first data F8, the fourth data 13, and the seventh data B5 are
shifted to taps2x, taps1x, and taps0x, respectively. Finally, at 125 ns, all twelve data
words are shifted into the shift register. You can then start to tap the 1st-4th-7th-10th
data words simultaneously, from taps3x, taps2x, taps1x, and taps0x, respectively.

1 The shiftout output port is equivalent to taps3x and both ports generate the same
output data.

At the following rising clock edge, you can tap the 2nd-5th-8th-11th data words,
followed by the 3rd-6th-9th-12th data words at the next rising edge. Figure 5–8 shows
the contents for the shift register chain when all twelve words are being shifted into
the shift register.

After you have tapped out all the data at 155 ns, you can assert the aclr signal to
immediately clear all the data at the output ports and the contents of the shift register.
You can then start to shift in another twelve words of data.

1 This design example shows you how the shifting and tapping operation works. It is
not meant to show a specific application usage. You can use the tapping feature with
additional logic to suit your needs.

Figure 5–8. Content of the Shift Register Chain at 125 ns
August 2014 Altera Corporation RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

5–6 Chapter 5: Design Example
Design Example: Shift Register with Taps
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

August 2014 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

Date Document
Version Changes Made

2014.08.18 2014.08.18

■ Added information about specifying parameters for IP
cores targeting Arria 10 devices.

■ Added information about the latest IP output for Quartus
II version 14.0a10 targeting Arria 10 devices.

■ Added information about individual migration of IP cores
to the latest devices.

■ Added information about legacy parameter editor GUI
and output directories.

■ Added information about editing existing IP variations.

2014.06.30 3.0

■ Replaced MegaWizard Plug-In Manager information with
IP Catalog.

■ Added standard information about upgrading IP cores.

■ Added standard installation and licensing information.

■ Removed outdated device support level information. IP
core device support is now available in IP Catalog and
parameter editor.

■ Removed all references to obsolete SOPC Builder tool.

May 2013 2.2 Updated to include Arria V, Cyclone V, and Stratix V devices.

November 2010 2.1
■ Updated ports and parameters

■ Added prototype and component declarations

July 2008 2.0

■ Updated the list of device families supported by this
megafunction

■ Created a new design example with explanations
showing the features and behaviors of the megafunction

■ Added the description for the new input pin, aclr

■ Reorganized the whole document

March 2007 1.2 Added Cyclone® III support

December 2006 1.1 Added Stratix® III support

September 2006 1.0 Initial release
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide

6–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide August 2014 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide
	1. About this IP Core
	Features
	General Description

	2. Using Altera IP Cores
	Installing and Licensing IP Cores
	IP Catalog and Parameter Editor
	Using the Parameter Editor
	Specifying IP Core Parameters and Options
	Files Generated for Altera IP Cores
	Specifying IP Core Parameters and Options (Legacy Parameter Editors)
	Upgrading Outdated IP Cores
	Upgrading IP Cores at the Command Line

	Migrating IP Cores to a Different Device

	3. Parameter Settings
	4. Specifications
	Verilog HDL Prototype for the ALTSHIFT_TAPS
	VHDL Component Declaration for the ALTSHIFT_TAPS
	VHDL Library-Use Declaration
	Ports and Parameters for the ALTSHIFT_TAPS

	5. Design Example
	Design Example: Shift Register with Taps
	Design Files
	Configuration Settings
	Functional Simulation in the ModelSim-Altera Simulator
	Understanding the Simulation Results

	Additional Information
	Document Revision History
	Typographic Conventions

