Last updated 5/14/20

These slides outline the verification processes used
with out FPGA designs

Upon completion: You should be able to detail the
types of verification that can implemented and write
simple brute force testbenches

EE 3921 2 © tj

EE 3921

* Verification Strategy

» Register Transfer Level (RTL) Simulation
 Verifies functionality
* Pre synthesis
e Based on code only

e Gate Level Simulation
* Verifies functionality
e Post synthesis
* No timing information
e Timing Simulation
 V\erifies performance
e Post place-and-route

* Includes technology information
* Process corners, temperature, voltage

© tj

EE 3921

* Verification Strategy

* Component Test

* Bench

* Limited ability to exercise all possible situations
* ATE

* SCAN Chains

* Test Vectors

* System Test
* Integrate component into larger system
* Verify interfaces
* Verify overall operation to specification

© tj

EE 3921

* Testbench strategy
* Verify blocks in manageable chunks
* Verify hierarchically

e Re-verify after all block changes
* Test bench does not change after it has been validated

* |deally — created separately from the module
e Based on design specification

© tj

e General Testbench Structure

Inputs

Graphical
HDL
Text File

EE 3921

Device Under
Test (DUT)

RTL
Gate Level
Post Fit

A 4

Outputs

Graphical

Text File

© tj

EE 3921

e Manual Testbench

* Inputs
 HDL generated

e Expected Outputs
e User generated

* Results
 Compare waveforms to expectations

* Limited to
* Very small systems
e Systems with very few inputs and outputs

© tj

e Automated Testbench

* Inputs
 HDL generated
* Read from afile

* Expected Outputs

 HDL generated
e Be careful not to use the same code

 Read from a file
* Be careful not to use the same code

* Results
 |dentify errors and document

* Test #, Time, Expected Value, Actual Value, ...

EE 3921 8

© tj

e Quartus Interaction and ModelSim
* Test benches can contain un-synthesizable code

* Quartus will generate errors on compilation if you set the
testbench to the top level entity

e Use the block under test as the top level entity

EE 3921 9 © tj

EE 3921

* Testbench
* Input Signal Generation — concurrent statements

No I/O

-- testbench_stim_th. vhdl
-- by: johnsontimoj

-- created: 7/20/18

-- wersion: 0.0

-- Testbench stimulus generation example
-- dnputs: None

-- outputs: stimulus signals

Tibrary ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity testbench_stim_th is
-- No I/0
end entity;

architecture stimulus of testbench_stim_th is
-- concurrent signals

signal clk_con: std_logic = '0"; -- required based on usage
signal rsth_con: std_logic;

signal ¥_in_con: std_logic;

signal z_in_con: std_logic_vector (7 downto 0);

-- sequential signals

signal clk_seq: std_logic = '0"; -- required based on usage;
signal rsth_seq: std_logic;

signal X_in_seq: std_logic;

signal z_in_seq: std_logic_vector (7 downto 0);

-- clock constant - 50MHz
constant per: Time = 20 ns;

75— Convenience constant

© tj

* Testbench
* Input Signal Generation — concurrent statements

begin

-- note '

rsth_con

¥_in_con

Z_in_con

-— concur
‘after” uses continuous timing within a single statement

clk_con <= not clk_con after per/Z;

rent assi gnments

<= ‘l:l‘,
"1 after per®i;

[

{= lll,

0" after 20 ns,
1" after 25 ns,
0" after 3% ns;

<= (pthers => "0},
"10100101" after 20 ns,
std_logic_vector (to_unsigned(:

ned(

qi . z_in_con’length)) after 40 ns,
std_logic_vector (to_unsig

z_in_con’length)) after B0 ns;

@
=L

I

EE 3921

10100101)Dﬂﬂlﬂllﬂ)DDDDIILI

* Testbench
* Input Signal Generation — sequential statements

-- sequential assignments

-- Clock Process
clk: process
begin
wait for per/2;
clk_seq == not clk_seq;
end process;

-- Reset process (active low)
rsth: process
begin
rsth_seq <= "0°;
wait for per/2;
rsth_seq == "1°;
wait for per®2;
rsth_seq <= "'07;
wait; -- only executes once
end process;

ftesthendh st thifsth seq |0 | S N A AN NN N N N N

EE 3921

Iiil Now

Mrs |8 s

12 © tj

* Testbench
* Input Signal Generation — sequential statements

-- fixed pattern process
fixed: process
Enn;tant x_values: std_logic_vector(ll downto 0) := "110101100101";
egin
for i in x_values'range loop
¥_in_seq <= x_values(i);
wait for 10 ns;
end Toop;
wait for 20 ns; -- executes repeatedly
end process;

EE 3921 13 © tj

EE 3921

* Testbench
* Input Signal Generation — sequential statements

-- vector non-periodic process
Vnp: process
begin
wait for 20 ns;
Z_in_seq <=
wait for 20 ns;

wait for 10 ns;

z_in_seq <= "10100101";

wait; -- executes only once
end process;

z_in_seq «= std_logic_vector (fto_unsigned(l

C

= std_logic_vector{to_unsigned(22, z_in_seq"length));

5, z_in_seq lengthl));

100010110

00001111

10100101

Al e Al e
UG JUTIS

14

&0 e

Bline

© tj

