Cellular Networks

Last updated 5/3/21
Cellular - Background

- Generations

<table>
<thead>
<tr>
<th>1G (1980s)</th>
<th>2G (1990s)</th>
<th>2.5G (1990s)</th>
<th>3G (2000s)</th>
<th>4G (2010s)</th>
<th>5G (2020s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT</td>
<td>GSM</td>
<td>GPRS</td>
<td>UMTS</td>
<td>LTE</td>
<td>5G-NR</td>
</tr>
<tr>
<td>AMPS</td>
<td>PDC</td>
<td>EDGE</td>
<td>HSPA UMTS</td>
<td>LTE Advanced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS-136</td>
<td>IS-136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS-95A</td>
<td>IS-95B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
</tr>
<tr>
<td>FDMA</td>
<td>Voice/Data</td>
<td>Voice/Data</td>
<td>CDMA</td>
<td>CDMA</td>
<td>OFDM</td>
</tr>
<tr>
<td>Voice only</td>
<td>PSTN</td>
<td>PSTN/Packet</td>
<td>Voice/Data</td>
<td>Data/Voice</td>
<td>Data/Voice</td>
</tr>
<tr>
<td>PSTN</td>
<td>PSTN</td>
<td>PSTN/Packet</td>
<td>Packet Network</td>
<td>Internet</td>
<td>Internet</td>
</tr>
</tbody>
</table>
Cellular - Background

• POTS
 • Plain Old Telephone Service
 • ca. 1877 → mid 1980’s in US
 • Still used in many countries

• Wired analog communication
 • 2 wires – local loop
 • Full duplex
 • Circuit Switched

src: nationalww2museum.org
Cellular - Background

- **POTS – Electrical Operation**
 - T – tip line
 - R – ring line
 - CO – central office

- **Outgoing call**
 - Pick up handset → Hook switch → closed
 - Current flows → sensed by the current sensor
 - CO generates a dial tone on the line
 - CO connects digit decoder to the line
 - CO connects calling line to Receiving line
 - Voice coil and speaker signals transferred between handsets

- **Incoming call**
 - CO generates a ring signal
 - Answered → Hook switch → closed
 - Current sensor stops the ring and connects the lines
 - Voice coil and speaker signals transferred between handsets
Cellular - Background

- Broadcast Radio
 - Transmit only
 - Line of sight

- Earliest radio-phones
 - 1946
 - FM – push to talk
 - Single high-powered transmitter
 - Several smaller receive locations
 - https://youtu.be/xDy2tHCPdk8 (10 minutes – sorry about the ads)
 - Very limited subscriber numbers
 - Wide BW signals, narrow available BW → few channels
Cellular - Background

- Tx/RX sequencing
 - Simplex
 - Receive or transmit only
 - Garage door opener
 - Pagers
 - Broadcast radio and TV
 - Half duplex
 - non-simultaneous Rx/Tx
 - Walky-talky
 - Full duplex
 - Simultaneous Rx/Tx (effectively)
 - Cellular
Cellular - Background

- Mobile Radio
 - Full Duplex Methods
 - FDD – Frequency Division Duplex
 - Separate frequencies used for transmit and receive
 - TDD – Time Division Duplex
 - Send and receive “packets” separated in time
 - Requires the information sent/received is small compared to the channel's capacity
 - Requires “real time” information to be low BW compared to the packet BW
- Terms
 - Station to user – forward channel - downlink
 - User to station – reverse channel - uplink
Cellular - Background

• Cellular
 • Transmitter
 • Fixed location
 • Range dependent on transmission power
 • Range varies with
 • Atmospheric conditions
 • Geographic topology
 • Man made structures

reliable transmission range

best case transmission range
Cellular - Background

• Cellular
 • Transmitter(s)
 • Common frequency

Common Frequency

No interference
GAPS !

Common Frequency

Interference !
GAPS !

Common Frequency

INTERFERENCE !
No gaps
Cellular - Background

- Cellular
 - Transmitter(s)
 - Non-common frequencies

4 frequencies

No interference
No gaps

64 frequencies
16 per transmitter (co-channels)

No interference
No gaps
Cellular - Background

• Cellular
 • Transmitter(s)
 • Non-common frequencies
 • N frequency groups
 • N = 4
Cellular - Background

- Cellular
 - Transmitter(s)
 - Non-common frequencies
 - N frequency groups
 - N = 7
Cellular - Background

- Cellular
 - Transmitter(s)
 - D – distance between cell centers using the same frequencies (channels)
 - R – radius of a cell
 - N – number of cells in a pattern
 - N = 1, 3, 4, 7, 9, 12, 13, 16, 19, ... N = I² + J² + (IJ) I, J = 0, 1, 2, ...
 - D/R = (3N)¹/²

- Example:
 - Assume 5 co-channels/cell, 25 users/channel at one time, desire to support 625 users in a 25km² area (circular)
 - With a N = 9 system, what would the value of D be?
 - 625 users, 25/channel → 25 channels → 5 cells
 - 5 x 2*PI*R² = 25km² → R = 0.89km
 - D = 4.64km
Cellular - Background

• Capacity expansion
 • Add new channels to a cell
 • Assign unused frequencies
 • Frequency borrowing
 • Assign channels from an adjacent (less loaded) cell
 • Can be done dynamically
 • Can impact the broader reuse pattern
 • Cell 1 borrows from cell 4 – may impact the next nearest cell 4

• Cell splitting
 • Shrink the footprint
 • More cells in a given area → more capacity
 • More towers
 • More handoffs

• Cell sectoring
 • Break the cell into radial sectors (3 or 6 typically)
 • Each sector can use all (most) co-channels independently
 • ~3x or 6x capacity
 • Requires directional antennas
Cellular – Circuit Switched

• Circuit Switched
 • Operate similarly to the POTS system
 • Dedicated lines (channels) between callers

• AMPS – 1G
 • Advanced Mobile Phone System
 • Analog signals
 • 3KHz voice FM modulated onto a 30KHz channel
 • 832 full-duplex (FDD) channels – 21 reserved for signaling
 • Downlink – 824MHz – 849MHz
 • Uplink – 869MHz – 894MHz
 • Approximately 800 conversations / cell cluster

• GSM – 2G
 • Global System Mobile
 • Digital signals
 • 3.1KHz voice GMSK modulated onto a 200KHz channel
 • Each channel time division multiplexed into 8 timeslots
 • A timeslot is dedicated to a single call
 • Most systems operate in 25Mz bands around 900MHz and 1800MHz
 • Approximately 1000 conversations / cell cluster
 • 14.4Kb/s of data / timeslot
Cellular – Circuit Switched

• Components
 • BS – Rx/Tx
 • At least 2 channels: Control, Traffic
 • BSC – controls the Rx/Tx
 • Communicates to the MSC

• MSC
 • Setup and breakdown of calls
 • Handles calls between connected mobiles

• GMSC
 • Connects to the PSTN for long distance
Cellular – Circuit Switched

- Components
 - HLR
 - Billing, services, ... for subscribers
 - VLC
 - Information on any mobiles roaming in the MSC domain
Cellular – Circuit Switched

• Mobile unit / Cell identification

• While turned on, the mobile unit periodically scans for forward control channels
 • Selects the strongest (may not be the closest)
 • De-facto selects the cell for communications

• A hand-shake process ‘registers’ the mobile unit with the MSC
 • Uses the forward and reverse control channels
 • MSC knows who is in which cells

• If the mobile unit is moving, this will update as it transfers between cells

• Mobile unit ‘listens’ for pages (see later slides)
Cellular – Circuit Switched

• Mobile unit call initiation
 • Mobile unit checks to see if the forward control channel is idle
 • When idle, the mobile send the desired number to the BSC on the reverse control channel
 • BSC sends the request on to the MSC

• The MSC then determines which BSC the called unit is operating in
 • The MSC then directs the BSC to send a page to the desired called unit on the forward control channel

• The called unit detects the page – through its monitoring of the forward control channel – and responds to its BSC/MSC to complete the call
 • The MSC then directs the BSC to assign (via the forward control channel) each mobile to a traffic channel and connects the 2 mobile units to complete the call
 • Each mobile unit will have its own channel depending on cell and co-channel assigned
 • Each mobile unit continues to operate on the control channel
 • Sharing call status and signal strength info with the BSC
Cellular – Circuit Switched

- Mobile unit call initiation

 - If either of the mobile units is moving – a handoff may be required
 - Signal strength gets weak, and an alternate control channel (different cell) has a stronger signal
 - The moving mobile unit will inform the BSC of a desire to switch control channels (cells)
 - If the change is within a BSC – it can reassign a new traffic channel and inform the MSC
 - If the change crosses BSCs - the MSC assigns the moving unit a new traffic channel in the new BSC/cell
 - The original call continues un-interrupted
Cellular – Circuit Switched

- Mobile unit call initiation – other conditions
 - Call termination
 - If either unit terminates the call the MTSO informs the other unit and releases the traffic channel
 - No traffic channels free – busy tone provided after some # of attempts
 - Call dropped
 - Signal becomes too weak (and no alternative available)
 - The BSC informs the MTSO that it cannot maintain the traffic channel
 - MTSO terminates the call
 - Out of current system calls
 - GMSC connects to the PSTN to complete the call
Cellular – Packet Switched

- Packet Switched
 - Uses the IP (internet protocol)
 - Channels are not dedicated to a call
 - Locations identified in packet headers
 - Can carry digitized voice
 - Can carry data

- Systems are backwards compatible to Circuit Switched

- GPRS – 2.5G
 - General Packet Radio Service
 - TDM/FDM similar to GSM
 - GMSK modulation with 20Kb/s per timeslot with enhanced coding
 - Timeslots are not dedicated to a call
 - More calls supported with existing resources
 - Multiple timeslots combined for faster data transfer
Cellular – Packet Switched

• EDGE – 2.5G
 • GSM Evolution
 • TDM/FDM similar to GSM
 • 8-PSK modulation – 3x bits of GSM/GPRS
 • 60Kb/s per timeslot with enhanced coding
 • Timeslots are not dedicated to a call
 • More calls supported with existing resources
 • Multiple timeslots combined for faster data transfer
Cellular – Packet Switched

- Packet Switched Systems
- IP type traffic
- Bursty – does not require the kind of dedicated channels that circuit switched systems need
Cellular – Packet Switched

• Packet Switched Systems
 • PCU
 • Assignment of timeslots to users
 • Flow control

• SGSN
 • Assigns packets to users to be passed to the PCU
 • Assigns packets from specific users back to the network connection
 • Handles connections, handoffs, ...

• GGSN
 • Assigns IP addresses for users
 • Connects to the external network
Cellular – Packet Switched

• UMTS – 3G
 • GSM/GPRS/EDGE Evolution
 • Radical radio interface change - CDMA
 • Most network component remain
 • Radio components changed significantly
Cellular – Internet

- LTE – 4G
 - Long term Evolution
 - UMTS Evolution
 - Aggregated carriers – multiple radio channels/user
 - Streamlined network
 - MIMO antenna structure
Cellular – Internet

• LTE – 4G
 • Radio interface – Radio Access Bearer (Signaling Radio Bearer, Data Radio Bearer)
 • eNB – autonomous - integrates RNC functionality
 • Handovers, resource allocation, ...
 • S1 – fiber or microwave – 2 logical components
 • X2 – eNB to eNB communication – handover and power control
Cellular – Internet

- LTE – 4G
 - MME – manages users, connections
 - S-GW – IP traffic management
 - PDN-GW – IP interface – assigns IP addresses, ...

Diagram:

- Internet Protocol Network
- eNB Base Station
- eNB Base Station
- CP Control
- S11
- S5
- S1
- X2
- UP User Data
- CP
- Gateway
- Serving Gateway
- Packet Data Network Gateway
- MME Mobility Management Entity
Cellular – Internet

- LTE – 5G
 - LTE evolution
 - New radio interface – OFDM
 - Higher carrier frequencies – wider bandwidth channels
 - Non-Standard version – reuses LTE network
Cellular – Internet

- LTE – 5G
 - LTE evolution
 - New radio interface - OFDM
 - Higher carrier frequencies – wider bandwidth channels
 - 5G - Core