Cellular Networks

Last updated 5/3/21

t j

POTS

- Plain Old Telephone Service
- ca. 1877 → mid 1980's in US
- Still used in many countries
- Wired analog communication
 - 2 wires local loop
 - Full duplex

src: nationalww2museum.org

- POTS Electrical Operation
 - T tip line
 - R ring line
 - CO central office
 - Outgoing call
 - Pick up handset → Hook switch → closed
 - Current flows → sensed by the current sensor
 - CO generates a dial tone on the line
 - CO connects digit decoder to the line
 - CO connects calling line to Receiving line
 - Voice coil and speaker signals transferred between hance
 - Incoming call
 - CO generates a ring signal
 - Answered \rightarrow Hook switch \rightarrow closed
 - Current sensor stops the ring and connects the lines
 - Voice coil and speaker signals transferred between handsets

src: pbxbook.com

- Broadcast Radio
 - Transmit only
 - Line of sight
- Earliest radio-phones
 - 1946
 - FM push to talk
 - Single high-powered transmitter
 - Several smaller receive locations
 - <u>https://youtu.be/xDy2tHCPdk8</u> (10 minutes sorry about the ads)
 - Very limited subscriber numbers
 - Wide BW signals, narrow available BW → few channels

- Tx/RX sequencing
 - Simplex
 - Receive or transmit only
 - Garage door opener
 - Pagers
 - Broadcast radio and TV
 - Half duplex
 - non- simultaneous Rx/Tx
 - Walky-talky
 - Full duplex
 - Simultaneous Rx/Tx (effectively)
 - Cellular

- Mobile Radio
 - Full Duplex Methods
 - FDD Frequency Division Duplex
 - Separate frequencies used for transmit and receive
 - TDD Time Division Duplex
 - Send and receive "packets" separated in time
 - Requires the information sent/received is small compared to the channel's capacity
 - Requires "real time" information to be low BW compared to the packet BW
 - Terms
 - Station to user forward channel downlink
 - User to station reverse channel uplink

- Cellular
 - Transmitter
 - Fixed location
 - Range dependent on transmission power
 - Range varies with
 - Atmospheric conditions
 - Geographic topology
 - Man made structures

reliable transmission

range

best case transmission

range

- Cellular
 - Transmitter(s)
 - Common frequency

Common Frequency

No interference GAPS !

Common Frequency

Interference ! GAPS !

Common Frequency

INTERFERENCE ! No gaps

- Cellular
 - Transmitter(s)
 - Non-common frequencies

4 frequencies

No interference No gaps 64 frequencies 16 per transmitter (co-channels)

No interference No gaps

- Cellular
 - Transmitter(s)
 - Non-common frequencies

- N frequency groups
 - N = 4

Cellular

- Transmitter(s)
 - D distance between cell centers using the same frequencies(channels)
 - R radius of a cell
 - N number of cells in a pattern
 - N = 1, 3, 4, 7, 9, 12, 13, 16, 19, ... N = $I^2+J^2+(IxJ)$ I, J = 0, 1, 2, ...
 - D/R = (3N)^{1/2}
 - Example:
 - Assume 5 co-channels/cell, 25 users/channel at one time, desire to support 625 users in a 25km² area (circular)
 - With a N = 9 system, what would the value of D be?
 - 625 users, 25/channel → 25 channels → 5 cells
 - $5 \times 2^* PI^* R^2 = 25 km^2 \rightarrow R = 0.89 km$
 - D = 4.64km

- Capacity expansion
 - Add new channels to a cell
 - Assign unused frequencies
 - Frequency borrowing
 - Assign channels from an adjacent (less loaded) cell
 - Can be done dynamically
 - Can impact the broader reuse pattern
 - Cell 1 borrows from cell 4 may impact the next nearest cell 4
 - Cell splitting
 - Shrink the footprint
 - More cells in a given area → more capacity
 - More towers
 - More handoffs
 - Cell sectoring
 - Break the cell into radial sectors (3 or 6 typically)
 - Each sector can use all (most) co-channels independently
 - ~3x or 6x capacity
 - Requires directional antennas

2

1

3

1

- Circuit Switched
 - Operate similarly to the POTS system
 - Dedicated lines(channels) between callers
- AMPS 1G
 - Advanced Mobile Phone System
 - Analog signals
 - 3KHz voice FM modulated onto a 30KHz channel
 - 832 full-duplex (FDD) channels 21 reserved for signaling
 - Downlink 824MHz 849MHz
 - Uplink 869MHz 894MHz
 - Approximately 800 conversations / cell cluster
- GSM 2G
 - Global System Mobile
 - Digital signals
 - 3.1KHz voice GMSK modulated onto a 200KHz channel
 - Each channel time division multiplexed into 8 timeslots
 - A timeslot is dedicated to a single call
 - Most systems operate in 25Mz bands around 900MHz and 1800MHz
 - Approximately 1000 conversations / cell cluster
 - 14.4Kb/s of data / timeslot

- Components
 - BS Rx/Tx
 - At least 2 channels: Control, Traffic
 - BSC controls the Rx/Tx
 - Communicates to the MSC

BSC

- Handles calls between connected mobiles
- GMSC
 - Connects to the PSTN for long distance

- Components
 - HLR
 - Billing, services, ... for subscribers
 - VLC
 - Information on any mobiles roaming

BSC

Base

Station Controller BS

Base Station

- Mobile unit / Cell identification
 - While turned on, the mobile unit periodically scans for forward control channels
 - Selects the strongest (may not be the closest)
 - De-facto selects the cell for communications
 - A hand-shake process 'registers' the mobile unit with the MSC
 - Uses the forward and reverse control channels
 - MSC knows who is in which cells
 - If the mobile unit is moving, this will update as it transfers between cells
 - Mobile unit 'listens' for pages (see later slides)

- Mobile unit call initiation
 - Mobile unit checks to see if the forward control channel is idle
 - When idle, the mobile send the desired number to the BSC on the reverse control channel
 - BSC sends the request on to the MSC
 - The MSC then determines which BSC the called unit is operating in
 - The MSC then directs the BSC to send a page to the desired called unit on the forward control channel
 - The called unit detects the page through its monitoring of the forward control channel – and responds to its BSC/MSC to complete the call
 - The MSC then directs the BSC to assign (via the forward control channel) each mobile to a traffic channel and connects the 2 mobile units to complete the call
 - Each mobile unit will have its own channel depending on cell and co-channel assigned
 - Each mobile unit continues to operate on the control channel
 - Sharing call status and signal strength info with the BSC

- Mobile unit call initiation
 - If either of the mobile units is moving a handoff may be required
 - Signal strength gets weak, and an alternate control channel (different cell) has a stronger signal
 - The moving mobile unit will inform the BSC of a desire to switch control channels (cells)
 - If the change is within a BSC it can reassign a new traffic channel and inform the MSC
 - If the change crosses BSCs the MSC assigns the moving unit a new traffic channel in the new BSC/cell
 - The original call continues un-interrupted

- Mobile unit call initiation other conditions
 - Call termination
 - If either unit terminates the call the MTSO informs the other unit and releases the traffic channel
 - No traffic channels free busy tone provided after some # of attempts
 - Call dropped
 - Signal becomes too weak (and no alternative available)
 - The BSC informs the MTSO that it cannot maintain the traffic channel
 - MTSO terminates the call
 - Out of current system calls
 - GMSC connects to the PSTN to complete the call

Packet Switched

- Uses the IP (internet protocol)
- Channels are not dedicated to a call
 - Locations identified in packet headers
- Can carry digitized voice
- Can carry data
- Systems are backwards compatible to Circuit Switched

• GPRS – 2.5G

- General Packet Radio Service
- TDM/FDM similar to GSM
- GMSK modulation with 20Kb/s per timeslot with enhanced coding
- Timeslots are not dedicated to a call
 - More calls supported with existing resources
 - Multiple timeslots combined for faster data transfer

- EDGE 2.5G
 - GSM Evolution
 - TDM/FDM similar to GSM
 - 8-PSK modulation 3x bits of GSM/GPRS
 - 60Kb/s per timeslot with enhanced coding
 - Timeslots are not dedicated to a call
 - More calls supported with existing resources
 - Multiple timeslots combined for faster data transfer

- Packet Switched Systems
 - IP type traffic
 - Bursty does not require the kind of dedicated channels that circuit switched systems need

- Packet Switched Systems
 - PCU
 - Assignment of timeslots to users •
 - Flow control

- Assigns packets to users to be passed to the PCU
- Assigns packets from specific users back to the network connection
- Handles connections, handoffs, ...
- GGSN
 - Assigns IP addresses for users
 - Connects to the external network

• UMTS – 3G

Internet

Protocol

Network

Public

Telecommunications

Network

GSM/GPRS/EDGE Evolution

GGSN

Gateway

GPRS

Support

Node

- Radical radio interface change CDMA
- Most network component remain

GMSC

Gateway

Mobile

Switching

Center

Radio components changed significantly

SGSN

Serving

GPRS

Support

Node

PCU

Packet

Control

Unit

MSC

Mobile

Switching

Center

- LTE 4G
 - Long term Evolution
 - UMTS Evolution
 - Aggregated carriers multiple radio channels/user
 - Streamlined network
 - MIMO antenna structure

- LTE 4G
 - Radio interface Radio Access Bearer (Signaling Radio Bearer, Data Radio Bearer)
 - eNB autonomous integrates RNC functionality
 - Handovers, resource allocation, ...
 - S1 fiber or microwave 2 logical components
 - X2 eNB to eNB communication handover and power control

- LTE 4G
 - MME manages users, connections
 - S-GW IP traffic management
 - PDN-GW IP interface assigns IP addresses, ...

- LTE 5G
 - LTE evolution
 - New radio interface OFDM
 - Higher carrier frequencies wider bandwidth channels
 - Non-Standard version reuses LTE network

- LTE 5G
 - LTE evolution
 - New radio interface OFDM
 - Higher carrier frequencies wider bandwidth channels
 - 5G Core

