Last updated 2/25/21

Semiconductor Technology

"The number of transistors and resistors on a chip doubles every 24 months" -Gordon Moore

Two Implications:

- 1. Cost per square millimeter goes up over time
- 2. Doubling of transistors = "Scaling"
 - Improves performance
 - Cost per transistor declines

Semiconductor Technology

IS MOORE'S LAW DEAD? NO!

TECHNOLOGY AND MANUFACTURING DAY

intel.

Semiconductor Technology

MICROPROCESSOR DIE AREA SCALING

Hyper scaling delivers better than 0.50x die area scaling on 14 nm and 10 nm

TECHNOLOGY AND MANUFACTURING DAY

Semiconductor Technology

TECHNOLOGY AND MANUFACTURING DAY

Semiconductor Technology

14NM IS ~3 YEARS AHEAD

Source: Intel

intel

- Processor Cost Overview
 - Key Components building to part cost
 - Wafer Cost
 - 300mm wafers range from \$5000/wafer (early) down to \$1200/wafer (mature)
 - Cost reductions associated with process maturity
 - Wafer Yield = number of wafers that make it through the process with working transistors
 - Die Cost
 - Based on the number of full die that can fit on a wafer
 - Good Die Cost
 - Based on the number of die that are fully functional (may include redundancy)
 - Packaged Part Cost
 - Add the cost of package and packaging process
 - Good Packaged Part Cost
 - Based on the number of fully functional packaged parts (may include redundancy)
 - Margin
 - Additional \$ to cover R&D, facilities, ... AND profit

Processor Cost Overview

Wafer Cost

- 45nm, 300mm wafers ~ \$2000/wafer
- Typical "lot" of 25 wafers
- Typical wafer yield of 95%
 - Losses are a combination of single wafers and whole lots
- Die Cost
 - # of full die that will fit on a wafer
 - Various approaches to maximize die count
 - Die Cost = Wafer Cost / # of Die

Processor Cost Overview

- Processor Cost Overview
 - Good Die Cost
 - Based on the number of die that are fully functional
 - 2 primary yield components
 - Parametric Yield
 - Process Yield
 - Parametric Yield
 - Parts that fail to meet a performance measure
 - Typically max frequency or current drain
 - Can be mitigated by binning (have a fast version of the part and a slow version)
 - Typically 95% on digital parts
 - Process Yield
 - Dominated by defects in the manufacturing process
 - $Y = Y_o (1 + \frac{D_0 A}{\alpha})^{-\alpha}$ NB negative binomial model
 - Y₀ portion of area subject to defects (0.8-0.95)(not other failures)
 - D₀ defect density (100defects/cm² (early) 0.15defects/cm²(mature))
 - A die area (20mm² 400mm²)
 - α cluster factor (10 20)

- Processor Cost Overview
 - Packaged Part Cost
 - Add the cost of package and packaging process
 - \$0.20 for small simple packages
 - \$2 \$4 for complex BGAs
 - \$1 for POP
 - Good Packaged Part Cost
 - Based on the number of fully functional packaged parts
 - Package yield is typically 95% 99+%
 - Margin
 - Additional \$ to cover R&D, facilities, ... AND profit
 - 20% for mature products
 - 50% for new products

© tj

- Processor Cost Example
 - Arm Cortex A9
 - 32kB I/D Cache
 - 26M transistors
 - 500mW @ 2GHz
 - 5mm² in 45nm process technology
 - Apple A5
 - Dual Arm Cortex A9s
 - 45nm Samsung Process
 - Die size = 122mm²
 - 1300 pin POP BGA
 - Samsung 45nm process
 - 300mm wafers
 - $D_0 = 0.25 \text{ defects / cm}^2$
 - α= 10
 - $Y_0A5 = 0.95$

- Processor Cost Example
 - Wafer Cost
 - 300mm, 45nm → \$2000 / wafer
 - Wafer yield 95% → \$2105 / wafer
 - Die Cost
 - 122mm2 \rightarrow 491 die/wafer \rightarrow \$4.29 / die
 - Good Die Cost
 - $Y = Y_o (1 + \frac{D_0 A}{\alpha})^{-\alpha} = 0.95(1 + \frac{(0.25 \ def ects/cm^2)(122mm2 \times (\frac{1cm}{10mm})^2)}{10})^{-10} =$ 0.703
 - Defect driven die cost = \$4.29/die / 0.703 = \$6.10 / die
 - Parametric yield 0.98 → \$6.22 / die
 - Packaged Part Cost
 - 1300 pin POP-BGA = \$3 → 9.22 / part

- Processor Cost Example
 - Good Packaged Part Cost
 - 98% yield → 9.41 / part
 - Margin
 - If this was not an Apple design
 - Margin = 50% → Part cost = \$18.82
 - Apple can cover the margin costs at the final product level
 - → Part Cost = \$9.41
 - Gut feel cost before margin = \$6.50

- Product Cost
 - Direct Costs
 - Costs directly associated with the construction and delivery of a product
 - Indirect costs
 - Costs assigned to the development, manufacturing and delivery of a product
 - Non-Product costs
 - Administration, Sales, Marketing, ...

- Direct Costs
 - Materials used in the product
 - Cost of ICs, other components, PCB boards, displays, housings, ...
 - Manufacturing / Assembly
 - Labor
 - Assigned factory costs
 - Rework / Yield / Scrap
 - Other costs
 - Warranty
 - Packaging and delivery

- Indirect Costs
 - Development
 - Labor Engineers, ...
 - Resources Computers, SW, lab equipment, ...
 - Validation development boards, prototypes, ...
 - Intellectual Property
 - Unit Licenses
 - Technology Licenses

- Development Decision
 - Will this product provide a profit to the company after all costs?

```
Product Sales Price * # of Units

>
Direct costs * # of units

+
Development Costs

+
Overhead Costs

+
Profit
```

© tj

- Development Decision
 - Will this product provide a profit to the company after all costs?

Product Sales Price * # of Units >
Direct costs * # of units +
Development Costs +
Overhead Costs +
Profit Unit Price
 >
 Unit Cost
 +
 Margin

Design Costs

Extereme tech

Factory Cost Trends

Source: Reports and press releases from Intel, TSMC and Global Foundries

Seeking alpha

Wafer cost trends

Product cost over time

