Last updated 2/25/21

Mini-History of Main-Stream Integrated Circuits

- Point Contact Diode
- Junction Diode
- JFET Junction Field Effect Transistor
- BJT Bipolar Junction Transistor
- MOSFET
 - Enhancement Mode Metal Oxide Semiconductor Field Effect Transistor
 - Depletion Mode Metal Oxide Semiconductor Field Effect Transistor
 - N-Channel, P-Channel
- E + D N-channel transistors → NMOS Technology
- $E_P + E_N$ channel transistors \rightarrow CMOS Technology
 - Complementary Metal Oxide Semiconductor Field Effect Transistor
- BiCMOS Bipolar + MOS

Rapidly changing Process Technology FinFET Channel All Around Nano-Tubes

Planer Process — Technology > 100um

< 20nm

> 4mil

- MOS Terminology
 - Metal Oxide Semiconductor Field Effect Transistor
 - 4 terminal devices
 - Source, Gate, Drain, Body
 - Threshold Voltage (Vth or Vt)
 - The voltage from gate to source (Vgs) required to "turn on" the device
 - Ron / Roff
 - Device impedance in the "on" or "off" state
 - Leakage Current
 - Parasitic current from junctions to substrate or gate to junctions

- MOS Terminology
 - N-type (N-channel)
 - Forms a conducting n-channel from source to drain
 - Requires a positive Vgs > Vth to form the channel and "turn on" the device

- CMOS Terminology
 - P-type (P-channel)

S

D

G ____ → B

- Forms a conducting p-channel from source to drain
- Requires a negative Vgs > Vth to form the channel and "turn on" the device

- MOS Terminology
 - CMOS
 - Complementary MOS
 - Contains both P-MOS and N-MOS devices
 - Almost all digital circuits today are built using CMOS technology

- CMOS Process Technology
 - Traditionally referenced to the gate length or metal 1/2 pitch
 - 0.25 micron process, 130nm process, 14nm process
 - Over the years the relationship between reference name and physical parameters has become tenuous
 - Silicon atom spacing is ~ 5 angstroms = 5×10^{-10} m
 - \rightarrow 14nm = 28 atoms
 - Reference names more closely tied to L_{eff}
 - Move underway to redefine the technology node names
 - Gate oxide thickness is 2nm
 → 4 rows of atoms

© tj

7

- Simplified CMOS Digital Design
 - Use simplified models for the MOSFETs
 - switch either "on" or "off"
 - N-MOS devices
 - "on" when a logic high is applied to the gate
 - "off" when a logic low is applied to the gate
 - P-MOS devices
 - "on" when a logic low is applied to the gate
 - "off" when a logic high is applied to the gate

- Simplified CMOS Digital Design
 - N-MOS devices
 - "on" when a logic high is applied to the gate
 - "off" when a logic low is applied to the gate

- Simplified CMOS Digital Design
 - P-MOS devices
 - "on" when a logic low is applied to the gate
 - "off" when a logic high is applied to the gate

- Simplified CMOS Digital Design
 - CMOS Inverter
 - logic low "0" is Gnd
 - logic high "1" is Vdd

- Simplified CMOS Digital Design
 - CMOS Nand Gate

A B

0

0

0 1 Out

1

1

Gate Level Performance

- Gate Level Performance
 - Transient Characteristics
 - Equalize t_r and t_f by making Wp \cong 2.8 Wn

•
$$t_r \cong t_f \cong K_n \frac{C_L}{\beta_n V_{DD}} \cong K_p \frac{C_L}{\beta_p V_{DD}}$$
, $Kn \sim Kp \sim 3.5$

- $t_d \cong t_r/2 \cong t_f/2$
- Optimize delay
 - reduce C_L
 - increase V_{DD}
 - increase $\beta \rightarrow$ reduce t_{ox}
 - why might this be the best approach?

In-

Vdd

Out

- Gate Level Power
 - 3 primary components of gate level power
 - Static Power (leakage)
 - Dynamic Power (CV²F)
 - Short Circuit Power (shoot-through)

- Gate Level Power
 - Static Power
 - Leakage currents through the reverse biased diode junctions always present
 - Sub-threshold current current from S-D when the input voltage is below Vt – due to voltage drops
 - Gate leakage current current from the gate to S/D/Body due to oxide defects or quantum tunneling
 - Design Considerations
 - Multiple Vt devices
 - Thick oxide devices
 - Reduce supply voltages why?

- Gate level Power
 - Dynamic Power
 - Power associated with slewing the load capacitance

•
$$E = \int Pdt = \int IVdt = \int C \frac{dv}{dt} Vdt = \int CVdv = \frac{Cv^2}{2}$$

- energy per transition = $C_L V_{dd}^2/2$
- Power is energy / time
- $P_{dynamic} = CV^2 f$
- Design considerations
 - Run circuits at the lowest possible speed
 - Reduce supply voltages
 - Minimize capacitance

Vdd

Gnd

Out

In

- Gate Level Power
 - Short Circuit Power
 - Both devices are on
 - Symmetrical gate \rightarrow $P_{sc} \cong \frac{\beta}{12} (V_{DD} - 2V_t)^3 f t_{rf}$
 - Design Considerations
 - large relative loads → lower Psc
 - small relative loads → higher Psc
 - Match t_r and t_f through the chain
 - Reduce supply voltages

- Gate Level Power
 - Resulting Trends
 - Lower Voltages
 - Reduces power
 - Allows thinner junctions
 - Slows down devices
 - Smaller Geometries
 - Lower capacitances
 - More devices / chip
 - Higher process development costs
 - Thinner Oxides
 - Increase β
 - Higher gate capacitance

FinFET Technology

500

CUL

to to the second

14nm-class FinFET transistor

Finter

FinFET Technology

42nm each side + 6nm top = 90nm W_{eff} with actual pitch of 24nm

All Fins and all Gates are a standard size

Larger devices are created by wiring standard devices in parallel

Dummy Fins and Gates can be used to ensure uniformity

FinFET Technology

Physical Properties of Transistors

YEAR OF PRODUCTION	2015	2017	2019	2021	
Logic device technology naming	P70M56	P48M36	P42M24	P32M20	
Logic industry "Node Range" Labeling (nm)	"16/14"	"11/10"	"8/7"	"6/5"	
Logic device structure options	FinFET FDSOI	FinFET FDSOI	FinFET LGAA	FinFET LGAA VGAA	
LOGIC DEVICE GROUND RULES					
MPU/SoC Metalx ½ Pitch (nm)[1,2]	28.0	18.0	12.0	10.0	
MPU/SoC Metal0/1 ½ Pitch (nm)	28.0	18.0	12.0	10.0	
Contacted poly half pitch (nm)	35.0	24.0	21.0	16.0	
L _g : Physical Gate Length for HP Logic (nm) [3]	24	18	14	10	
L _g : Physical Gate Length for LP Logic (nm)	26	20	16	12	
FinFET Fin Half-pitch (new) =0.75 or 1.0 M0/M1 (nm)	21.0	18.0	12.0		
FinFET Fin Width (nm)	8.0	6.0	6.0		
FinFET Fin Height (nm)	42.0	42.0	42.0		

FinFET Technology

FinFET Technology

- Intel NanoSheet
 - Vertical stack gate all around

Technology players dwindling due to dev costs

	Number of Semiconductor Manufacturers with a Cutting Edge Logic Fab												
SilTerra													
X-FAB													
Dongbu HiTek													
ADI	ADI												
Atmel	Atmel												
Rohm	Rohm												
Sanyo	Sanyo												
Mitsubishi	Mitsubishi												
ON	ON												
Hitachi	Hitachi												
Cypress	Cypress	Cypress											
Sony	Sony	Sony											
Infineon	Infineon	Infineon											
Sharp	Sharp	Sharp											
Freescale	Freescale	Freescale											
Renesas (NEC)	Renesas	Renesas	Renesas	Renesas									
Toshiba	Toshiba	Toshiba	Toshiba	Toshiba									
Fujitsu	Fujitsu	Fujitsu	Fujitsu	Fujitsu									
ті	ТІ	TI	TI	TI									
Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic								
STMicroelectronics	STM	STM	STM	STM	STM								
HLMC	HLMC		HLMC	HLMC	HLMC								
UMC	UMC	UMC	UMC	UMC	UMC		UMC						
IBM	IBM	IBM	IBM	IBM	IBM	IBM							
SMIC	SMIC	SMIC	SMIC	SMIC	SMIC		SMIC	SMIC					
AMD	AMD	AMD	GlobalFoundries	GF	GF	GF	GF						
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung			
TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC			
Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel			
180 nm	130 nm	90 nm	65 nm	45 nm/40 nm	32 nm/28 nm	22 nm/20 nm	16 nm/14 nm	10 nm	7 nm	5 nm			
	Src: wikichi												