Last updated 4/29/20

e Consider

Need to load a page from disk to main memory

Need to transfer an MP3 file from memory to an audio
block

Need to copy a file from your computer to a flash drive

All of these transactions need to be managed in some way

EE 4980 — MES 2

© tj

e Data transfer

EE 4980 — MES

Use the CPU to transfer the data

CPU reads a word from the hard drive
CPU writes a word to main memory
Repeat

If the transfers are fast — the CPU cannot accomplish
anything else

If the transfers are slow, the CPU will constantly be
changing it’s context in response to interrupts

Request word Do something else

DO something else Interrupt — write complete
Interrupt — word ready Submit request for next word
Get word and submit write

3

© tj

* DMA

 Remove the CPU from the ongoing operation

Address
Data
CPU Memory
Control
Bus Grant,
Programming, | DMA | ,
> < » Disk

Interrupt Controller

EE 4980 — MES 4 © tj

* DMA

 Remove the CPU from the ongoing operation

EE 4980 — MES

CPU

Address

Data

Control

Bus Grant

Programming

CPU tells the DMAC where to get the data e
CPU tells the DMAC how much data to get
CPU tells the DMAC where to put the data

CPU grants the DMAC control of the bus
* Meanwhile the CPU operates on registers, cache data, ...

DMA

Memory

Controller

Disk

© tj

* DMA

Address

Dat
CPU i Memory

Control

* Transfer modes

Bus Grant

Programming DMA i
Disk
Interrupt Controller

e Burst mode

* Once the DMA has control of the bus — it keeps it until transfer is
complete

e Cycle stealing mode
* DMA interleaves requests with CPU 1-1 1-2 1-4, ...

* Transparent mode
* CPU reclaims the bus any time it needs it

* DMA remembers where it was and continues as soon as the CPU
releases the bus

EE 4980 — MES 6 © tj

* DMA — Modern example

EE 4980 — MES

T DMC & DRAM
- SMC > Flash
mamany
Secura
T TLAFB APE slave
* intarface
AX]
ARM AXI miastar [
processor Intarconnact Non- intarfaca
_ | AXIAPE sacura
| brdge | APB slave | DMAC
intarlaca
Py = LART]
P Paripharal Intemupt
processor requast
intarface outputs
| GPIC
-] Tiimar
7

© tj

* DMA — Modern example

MFIFO
Register access for hion-pecure DMA data
= 4—| APE slave instruction
tha Mon-sacure slate . APB . buffar
interfaca exacution Ax] DA
memary enging Read maser [4— dat
Reqjisior cs for Sacura WEFTEC' instruction intarface transfer
e A APE slave | [PF5EE Nineinicion quaue
tha Secum state .
interfaca cacha Writa
instruction
Resat quaus
Tie-offs =— inilialization DMAC
interfaca
HF"EII'ipI'ElIE| requastinterfaca 0 Int
k - nbamupt Int
—p{ Peripharal requestinterface 1 inberfac # Intarmupts
Raguests +#—| Paripharal requastintarface 2
f !
| P ripheral request inlefaca n
EE 4980 — MES 8 © tj

* DMA — Modern example

Nan-secura
| APE zlave
interface

Register access for
tha Non-secura state

DMA

slar [de— daiz
fransfer

Secura

Register access for

* Instruction Execution Engine R e, |

Rasat
Tie-offs —— initialization
inlarface

HF'eriphelal requastinierface 0 Int
Requests.

larupt
4—Peripharal requast interface 1 intertaca [Interrupts

—|Peripheral requestinterface 2

Reads instructions from its cache

#—»| Paripheral requestiniedace n

Supports a separate PC for each DMA channel
* Up to 8 DMA channels = 8 concurrent threads

1 thread for management

Executes 1 management instruction then 1 channel instruction
* Changes channel threads each cycle (round robin)

EE 4980 — MES 9 © tj

* DMA — Modern example

MNon-secure
APB slava

interface

MFIFO
data
buffer

Secura

APE slave

interface

Read N

queue
Write

Resat

initialization

intarface

quaue

Peripharal requestinterface 0

* Read/Write instruction queues

Paripharal request interfaca 1

Peripheral requestinterface 2

Perpharal requestinterface n

N/

EE 4980 — MES

e Load instructions are written to the read instruction queue

e Store instructions are written to the write instruction queue

 Instructions then execute out of the queue via the AXI protocol

* DMA — Modern example

Rﬁi?;m:;m‘—'ﬂ;:g sheve registers Ins:an;:m iwr:B e e
* Multi-FIFO = I

» Buffers data in/out for each channel
* Single FIFO with width matched to bus width

e Can pack and unpack narrower data

e E.g. 32 bit width can hold 2 16 bit data values
 Individual channels can be variable depth
* Sum of all channels must not exceed physical size

EE 4980 — MES 11 © tj

Thread usage:

Mnemonic Instruction * M = DMA manager
* C = DMA channel

DMAADDH Add Halfword C
o DIVIA =y InStrUCtlon Set DMAADNH Add Negative Halfword C
DMAERD End M C
DMAFLUSHF Fhush and Motify Penpheral C
DMAGD o M -
DMAKTLL Eall M C
DMALD Load C
DMALDP Load and MNotify Peripheral C
DHALP Loop C
DEALPEND Loop End C
DMAL PFE Loop Forever C
DRAMON Move C
DMANDP Mo operation M C
DMARME Eead Memory Bamer C
DMASEW Send Event M C
DMAST Store C
DMASTP Store and Motify Penpheral C
DMASTZ Store Zero C
DMAWFE Wait For Event M C
DMAWFP Wait For Panpheral C
IMAAVE Wrnte Memory Barmer C

EE 4980 — MES 12 © tj

* DMA — Instruction Set

* DMALP lcx #
* DMALPEND

* Loop instructions
* lcx —loop counter x, 0-8
 #-number of iterations, 1-256

EE 4980 — MES 13

© tj

* DMA — Instruction Set

* DMALD
* DMAST

* LD - loads values from the peripheral into the MFIFO using the AXI
tags the MFIFO entry with the correct channel #

e ST —Stores values into the peripheral from the MFIFO using the AXI
tags the MFIFO entry with the correct channel #

EE 4980 — MES 14

© tj

* DMA — Instruction Set

* DMAMOV REG #

e Load immediate value # into register REG

* DMAEND

* Transfer is complete

EE 4980 — MES 15 © tj

* DMA — Key Registers

* Source address registers
e Used for loads

EE 4980 — MES

* 32 bit addressing

Gxdad
G420
Bed4a
GxdGa
G480
RS LT
BxdCa
de4EQ

SARD
SAR1

SARS3
SAR4
SARS
SARG
SART

Soarce address for DRMA channel
Sowrce address for DMA channel
Sowrce address for DMA channel
Soarce address for DRMA channel
Sowrce address for DMA channel
Sowrce address for DMA channel
Soarce address for DRMA channel
Sowrce address for DMA channel

16

e L= L L TR o R N R S]

© tj

* DMA — Key Registers

e Destination address registers

EE 4980 — MES

e Used for stores
* 32 bit addressing

B
fedi4
R SR
B i
EE L
Hedid
RS
fedE4

DAROD
DARI
DAR2
DAFR3
DAFA4
DAFS
DARG
DART

Destination address for DMMA channe] {)
Deshination address for DA channe] 1
Destination address for DA channe] 2
Destination address for DMMA channe] 3
Destination address for DMMA channe] 4
Destination address for DA channe] 5
Destination address for DMMA channe] 6
Diestination address for DMMA channe] 7

17

© tj

* DMA — Key Registers

* Channel control registers
e Used for setting up transactions

EE 4980 — MES

RS
@428
G448
@468
@488
iR LR
iR
@x4ER

CCRO
CCEl1
CCR2
CCR3
CCE4
CCES
CCRS6
CCR7

Channe] control
Channe] contral
Channel control
Channe] control
Channe] contral
Channe] control
Channe] control
Channe] contral

for DMA channel 0
for DMA channel] 1
for DMA chanme] 2
for DMA chanmel 3
for DMA channel 4
for DMA channel 5
for DMA channel] 6
for DMA channel 7

18

© tj

* DMA — Key Registers

* Channel control registers

Dﬁrsiinaﬁgn control Eﬂur-:,aﬁm ritral
(T)
3130 2827 2524 221 | 1817 151413 [0 8|7 4la 10
dst_burst sro_burst
lan lan
I I J I I I
resarved dst cacha _cid dst bursl_sira dst_inc g¢_prot_ctd SIC_inG
andian_swap_siza dst prot_ctd src_cache_cid src_burst size

EE 4980 — MES 19 © tj

* DMA — Key Registers

e Channel control registers —assembler directives

EE 4980 — MES

Syntax Description Options Default
5S4 Source address increment. Sets the value of ARBURSTI0]. I = Increment I
F =Frxed
58 Source burst size m bits. Sets the vahue of ARSIZE[2:0]. 3,16 32 64 orl123 3 Limited to 16 byte beats
5B Source burst length. Sets the value of ART.EN[3:0]. 1to 16 1 Limited to 16 beat bursts
SP Source protection. Ota 72 0
SC Source cache. 0 to 1530 0
DA Desonation address increment. Sets the value of AWBURST[0]. [= Increment I
F =Frxed
Ds Diestnation burst size in bits. Sets the value of AWSIZE[2:0]. 3,16, 3264 or123 3
DB Destnation burst length. Sets the value of AWLEN[3:0]. 1to 16 1
DF Destnation protection. 0to 72 0
D Deestmation cache. 0 ta 152¢ 0
ES Endian swap size, m buts. 8, 16,32 64 or 128 3

20

© tj

 Example 1

* Write a code snippit to transfer 8, 32 bit words from
memory mapped location 0x1000 to location 0x2000.
(assume a 32bit AXI data bus)

DMAMOV CCR SB8 SS32 SA1
DMAMOV CCR DB8 DS32 DA1
DMAMOV SAR 0x1000
DMAMOV DAR 0x2000

DMALD
DMAST

EE 4980 — MES

// set up 32 bit beat, 8 beat burst at source, incrementing

// set up 32 bit beat, 8 beat burst at destination, incrementing
// set source address

// set destination address

// load from 0x1000 to MFIFO
// store from MFIFO to 0x2000

21 © tj

* Example 2

* Write a code snippit to transfer 128, 32 bit words from
memory mapped location 0x4000 to location 0x5000.
(assume a 32bit AXI data bus)

Note — max burst length is 16 beats

DMAMOV CCR SB8 SS32 SA1 // set up 32 bit beat, 8 beat burst at source, incrementing
DMAMOV CCR DB8 DS32 DA1 // set up 32 bit beat, 8 beat burst at destination, incrementing

DMAMOV SAR 0x4000 // set source address
DMAMOV DAR 0x5000 // set destination address
DMALP Ic2 16 // set up to do 16 transfers
DMALD // load from 0x4000 to MFIFO
DMAST // store from MFIFO to 0x5000
DMALPEND

EE 4980 — MES 22 © tj

* Examples 1 and 2

* How much of the MFIFO was used in example 1

e 8 words

* How much of the MFIFO was used in example 2

e 8 words

EE 4980 — MES 23 © tj

