Hard Disk Drives

Last updated 3/1/21
Hard Disk Drive

• History
 • Magnetic Tapes
 • Serial access
 • 1955 – First Hard Disk Drive
 • RAMAC – Random Access Method of Accounting Control

100 bits/in – inside track
55 bits/in – outside track
1s average access time
Hard Disk Drive

• History

• Disk Diameter

* Memory Systems, Jacob et. al.
Hard Disk Drive

- History
- Areal Density

Src: InSIC

Src: JAP 117
Hard Disk Drive

• History

• Linear Density

* Memory Systems, Jacob et. al.
Hard Disk Drive

• History
• Units

Src: Forbes
Hard Disk Drive

• Fundamentals

• Rotating Storage Devices
 • Phonograph – record
 • Analog Storage
 • Indentations in plastic
 • CD/DVD
 • Digital Storage
 • Reflectivity of special coating
 • Hard Disk Drive
 • Digital Storage
 • Magnetic Polarization
Hard Disk Drive

• Fundamentals

• Rotating Storage Devices
 • Information is stored in rings around the disk
 • Concentric
 • Spiral
 • Two values locate all information
Hard Disk Drive

• Fundamentals

• Rotating Storage Devices

 • A movable Arm allows access for variable r

 • Rotating Disk allows access to θ
Hard Disk Drive

• Fundamentals

 • Rotating Storage Devices
 • Multiple Disks
 • 2 sided
 • Multiple Read/write heads
Hard Disk Drive

• Fundamentals

• Disk Drive Physical Size

• Physical sizes are determined by the size of the enclosure – not the disk
 • But not really the correct size – e.g. 3.5” drives are 4” wide

• Common Sizes
 • 3.5” – 4” x 5.75” x 1”
 • 2.5” – 2.75” x 3.94” x 0.75” with some low capacity drives as thin as 0.37”

• Less Common Sizes
 • 1.8”, 1”
Hard Disk Drive

• Fundamentals

• Disk Drive Performance

 • Response Time - Average
 • Time from command issue to transfer complete
 • Dependent on type of operation
 • R/W, sequential/non-sequential

 • Throughput (Bandwidth)
 • Data transfer rate
 • MB/s

 • Multiple requests
 • Stored in a command queue
 • Queueing Theory governs performance metrics
Hard Disk Drive

• Physical Layer

• Magnetism
 • Movement of electrons in atoms → moving charge
 • Moving charge → magnetic field

• In most materials
 • Random orientation of atoms
 • Random spin of the electrons
 • → cancelling of all the magnetic fields
Hard Disk Drive

• Physical Layer

• Magnetic Domains
 • Small regions 1mm³
 • Materials with unpaired electrons \rightarrow net magnetic field
 • Micro-structure of the material causes the magnetic fields to align
 • In most materials these domains are random \rightarrow no net magnetism
 • Ferro-magnetic materials
Hard Disk Drive

• Physical Layer

• Ferromagnetism
 • Materials with magnetic domains
 • When an external magnetic field is applied
 • The magnetic fields of the domains align
 • When the external magnetic field is removed
 • The magnetic fields of the domains remain aligned
 • Leaving behind a material that creates a net magnetic field

• The material has been magnetized
Hard Disk Drive

• Physical Layer

• Ferromagnetic Materials

• Magnetization Hysteresis

• Saturation – additional applied magnetic force will not increase the created magnetic field

• Retentivity – remnant magnetization when the external field is removed

• Coercivity – amount of reverse magnetic force required to de-magnetize the material
Hard Disk Drive

- Physical Layer

- Ferromagnetic Materials
 - Curie Temperature
 - Above this temperature the magnetic domains will not remain aligned once the external field is removed
 - Hard magnetic materials have wide hysteresis plots
 - Good for recording media
 - Soft magnetic materials have narrow hysteresis plots
 - Good for recording head materials
 - Easy axis
 - Direction the material prefers to point to
 - Disk want the easy axis to be parallel to the plane of the recording (disk)
Hard Disk Drive

• Writing

 • Saving data in a digital representation

 • Only need to know the direction of the induced magnetic field
 • Define positive and negative in direction of the track

 • Create an external field sufficient to induce saturation
 • Maximizes the Retentivity
 • Only need two values +/-
Hard Disk Drive

• Writing

external magnetic field

Ferromagnetic material
Hard Disk Drive

• Reading

 • Sense the very weak magnetic fields created by the magnetized regions in the material

 • Information is NOT stored in the direction of the magnetization

 • Information is stored in the transitions
 • Transition $\rightarrow 1$ Independent of direction of change
 • No transition $\rightarrow 0$ Independent of the current magnetization direction
Hard Disk Drive

• Reading

• Requires some sort of clock or synchronization

• Writing must be done in blocks
 • No way to just write a bit – need historical information
 • Blocks for write are called sectors
Hard Disk Drive

• Disks

 • Thin – maximize space utilization

 • Light – minimize power required to rotate

 • Rigid – low resonance

 • Flat and Smooth – to allow heads to have fixed height
 • No slapping
 • Consistent R/W characteristics

• Hard magnetic material

 • High retentivity - maximize S/N ratio
 • High coercivity – maximize stability of written data
Hard Disk Drive

• Disks

• Substrate

 • Typically Aluminum or an aluminum alloy
 • Low cost
 • Acceptable but not best in class smoothness
 • Soft – easily damaged

 • For small diameter disks glass or ceramics can be used
 • These can be made very smooth, but can be brittle for larger sizes
Hard Disk Drive

- Disks

- Magnetic Layer
 - Magnetic material composed of grains of magnetic domains
 - Smaller grains
 - Give better areal density
 - Less magnetically stable
 - Gamma ferric oxide, cobalt modified GFO, Chromium Dioxide, Barium ferrite
 - Deposited through thin-film sputtering
 - Allows for thin layers → sharper transitions
Hard Disk Drive

- Disks
 - Ni-P sublayer
 - Harder than AL
 - Allows for better polishing
 - Cr Underlayer
 - Interface for the magnetic coating
 - Better microstructure than Ni-P
 - Magnetic Layer
 - Carbon overcoat
 - Protects the magnetic material from corrosion
 - Prevents scratches and other damage
 - Lubricant
 - Prevent wear between head and disk should they touch

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant</td>
<td>1nm</td>
</tr>
<tr>
<td>Carbon Overcoat</td>
<td>10nm</td>
</tr>
<tr>
<td>CO+Cr+... Magnetic Layer</td>
<td>25nm</td>
</tr>
<tr>
<td>Cr Underlayer</td>
<td>50nm</td>
</tr>
<tr>
<td>Ni-P Sublayer</td>
<td>10Knm</td>
</tr>
<tr>
<td>AL-Mg Substrate</td>
<td></td>
</tr>
</tbody>
</table>
Hard Disk Drive

• Spindle Motors

• DC Motors
 • Spindle integrated into the motor
 • 3-phase, 8 pole typical
 • Servo controlled

• Requirements
 • High reliability
 • Operate for many years
 • Hundreds of thousands of start/stop cycles
 • Low vibration / wobble
 • Prevent head slaps
 • Keep tracks aligned through rotation
Hard Disk Drive

• Write Head

• Inductive write head
 • Ring (core) of magnetically soft material
 • Small gap at one end
 • Conductor wrapped around a portion of the ring
Hard Disk Drive

• Write Head

• Inductive write head
Hard Disk Drive

• Write Head

 • Inductive write head – key features

 • Small gap \rightarrow higher linear density (bits per inch)
 \rightarrow smaller side fields \rightarrow higher tracks per inch

 • Narrow head \rightarrow higher number of tracks per inch

 • Material needs high flux density to overwrite the disk material

 • Low electrical inductance for fast bit transitions

 • Mechanically strong – for the occasional head slap

 • Light weight – to make it easy to support at the end of the head arm
Hard Disk Drive

- Write Head

- Thin Film – Inductive write head
Hard Disk Drive

• Read Head

 • Can use the write head for reading

 • Changes in the magnetic field on the disk cause a change in the magnetic flux of the head

 • Changes in magnetic flux cause a voltage to be induced in the coil

 • The voltage is then read by the read circuitry

 • No longer used!
Hard Disk Drive

• Read Head

• Magnetoresistance

 • Electrical resistance of a material changes when the material is subjected to an external magnetic field

\[\Delta R = C_{MR} \cdot R \cdot \cos^2 \theta \]

R = nominal resistance

\(C_{MR} = \text{magnetoresistive coefficient} \sim 2-3 \% \)

\(\theta = \text{angle between the resulting internal magnetic field and the direction of current flow} \)
Hard Disk Drive

- Read Head
 - MR Read Head
 - We are looking for transitions → external field is up or down
 - Bias the easy axis to 0° wrt. the direction of current flow during manufacturing
 - This puts ΔR at max in the middle of a bit
 - This puts ΔR at min at the transitions
 - Sense the change in voltage to read whether a transition has happened or not
 - Physically shielded to ensure only one transition is detectable at a time
Hard Disk Drive

- Read Head

\[\Delta R = C_{MR} \cdot R \cdot \cos^2\theta \]

Min \(\Delta R \) (90° wrt current flow)

Max \(\Delta R \) (No component vertical wrt current flow - 0°)
Hard Disk Drive

• Read Head

• Giant Magnetoresistive Read Head (GMR)
 • Uses semiconductor technology to create stacked layers
 • ΔR is 5-8% vs 2-3% for MR \Rightarrow more sensitive
Hard Disk Drive

• Read/Write Head

• Combine the best of read and write technology
 • Able to optimize both independently
Hard Disk Drive

• Read/Write Head
 • Read head in front of write head
 • Write wide – read narrow
 • Write head is wider than read – writes a wider track
 • Read head placement does not need to be perfect
 • Builds in a guard band for noise
 • Write width determined by the narrow pole of the write head
 • Track pitch = write width + guard band
 • Guard band protects adjacent tracks from being overwritten
Cross-track profile

cross-track profiles of H_x, H_y, and H_ζ at $z=0$

Down-track profile

down-track profiles of H_x, H_y, and H_ζ at $z=0$

2D profile

[(Cross-track profile diagram)]

[(Down-track profile diagram)]

[(2D profile diagram)]
Hard Disk Drive

- Write Head
- Inductive write head
Hard Disk Drive

- Inductive Write Head P2 Layer
- Pole Width
- Inductive Write Head P1 Layer & Top Shield
- Write Gap Width
- Copper Write Coils
- Throat Height
- GMR Contacts & Hard Bias
- Bottom Shield
- GMR Read Sensor

SEM x-section image:
- Write Pole
- Write gap
- Trailing Shield
- Reader

Graphs showing the down-track RIR profile and cross-track RIR profile for various FL values.
Hard Disk Drive

• Read/Write Head

• Tracks per inch (tpi)
 \[Tpi = \frac{1}{\text{track pitch}} = \frac{1}{(W + \text{guard band width})} \]
 \[W = \text{write width} \]
 \[\text{Guard band} \ll W \]

• Flux change density
 • Density of transitions
 • \[\frac{1}{B}, \text{where } B \text{ is the bit length} \]

• Bits per inch (bpi)
 • Assuming no coding – \[\frac{1}{B} \]

• \(W \) to \(B \) ratio is approximately 4:1
Hard Disk Drive

- Read/Write Head
Hard Disk Drive

• Slider

 • Holds the R/W heads in position over the disk

 • Ride hydrodynamically on a cushion of air – air bearing
 • Tuned to provide an optimum flight height

 • Difficult due to the fact that the air is moving at different speeds at different radii.

 • Rotates to a ramp when drive is not spinning so the head does not contact the ramp.
Hard Disk Drive

• Actuator
 • Electromechanical actuator
 • Rotates the sliders back and forth across the disk
Hard Disk Drive

- Actuator
- Movie