Last updated 3/1/21

- History
 - Magnetic Tapes
 - Serial access
 - 1955 First Hard Disk Drive
 - RAMAC Random Access Method of Accounting Control

100 bits/in – inside track

55 bits/in – outside track

1s average access time

- History
 - Disk Diameter

^{*} Memory Systems, Jacob et. al.

- History
 - Areal Density

Src: InSIC

Src: JAP 117

- History
 - Linear Density

^{*} Memory Systems, Jacob et. al.

- History
 - Units

Src: Forbes

- Fundamentals
 - Rotating Storage Devices
 - Phonograph record
 - Analog Storage
 - Indentations in plastic
 - · CD/DVD
 - Digital Storage
 - Reflectivity of special coating
 - Hard Disk Drive
 - Digital Storage
 - Magnetic Polarization

- Fundamentals
 - Rotating Storage Devices
 - Information is stored in rings around the disk
 - Concentric
 - Spiral
 - Two values locate all information

- Fundamentals
 - Rotating Storage Devices
 - A movable Arm allows access for variable r
 - Rotating Disk allows access to θ

- Fundamentals
 - Rotating Storage Devices
 - Multiple Disks
 - 2 sided
 - Multiple Read/write heads

- Fundamentals
 - Disk Drive Physical Size
 - Physical sizes are determined by the size of the enclosure not the disk
 - But not really the correct size e.g. 3.5" drives are 4" wide
 - Common Sizes
 - 3.5" 4" x 5.75" x 1"
 - 2.5" 2.75" x 3.94" x 0.75" with some low capacity drives as thin as 0.37"
 - Less Common Sizes
 - 1.8", 1"

- Fundamentals
 - Disk Drive Performance
 - Response Time Average
 - Time from command issue to transfer complete
 - Dependent on type of operation
 - R/W, sequential/non-sequential
 - Throughput (Bandwidth)
 - Data transfer rate
 - MB/s
 - Multiple requests
 - Stored in a command queue
 - Queueing Theory governs performance metrics

- Physical Layer
 - Magnetism
 - Movement of electrons in atoms → moving charge
 - Moving charge → magnetic field
 - In most materials
 - Random orientation of atoms
 - Random spin of the electrons
 - → cancelling of all the magnetic fields

- Physical Layer
 - Magnetic Domains
 - Small regions 1mm³
 - Materials with unpaired electrons → net magnetic field
 - Micro-structure of the material causes the magnetic fields to align
 - In most materials these domains are random → no net magnetism
 - Ferro-magnetic materials

- Physical Layer
 - Ferromagnetism
 - Materials with magnetic domains
 - When an external magnetic field is applied
 - The magnetic fields of the domains align
 - When the external magnetic field is removed
 - The magnetic fields of the domains remain aligned
 - Leaving behind a material that creates a net magnetic field
 - The material has been magnetized

- Physical Layer
 - Ferromagnetic Materials
 - Magnetization Hysteresis
 - Saturation additional applied magnetic force will not increase the created magnetic field
 - Retentivity remnant
 magnetization when the
 external field is removed
 - Coercivity amount of reverse
 magnetic force required to
 de-magnetize the material

- Physical Layer
 - Ferromagnetic Materials
 - Curie Temperature
 - Above this temperature the magnetic domains will not remain aligned once the external field is removed
 - Hard magnetic materials have wide hysteresis plots
 - Good for recording media
 - Soft magnetic materials have narrow hysteresis plots
 - Good for recording head materials

- Direction the material prefers to point to
- Disk want the easy axis to be parallel to the plane of the recording (disk)

- Writing
 - Saving data in a digital representation
 - Only need to know the direction of the induced magnetic field
 - Define positive and negative in direction of the track
 - Create an external field sufficient to induce saturation
 - Maximizes the Retentivity
 - Only need two values +/-

Writing

Reading

 Sense the very weak magnetic fields created by the magnetized regions in the material

- Information is NOT stored in the direction of the magnetization
- Information is stored in the transitions
 - Transition → 1 Independent of direction of change
 - No transition

 O Independent of the current magnetization direction

Reading

- Requires some sort of clock or synchronization
- Writing must be done in blocks
 - No way to just write a bit need historical information
 - Blocks for write are called sectors

- Disks
 - Thin maximize space utilization
 - Light minimize power required to rotate
 - Rigid low resonance
 - Flat and Smooth to allow heads to have fixed height
 - No slapping
 - Consistent R/W characteristics
 - Hard magnetic material
 - High retentivity maximize S/N ratio
 - High coercivity maximize stability of written data

- Disks
 - Substrate
 - Typically Aluminum or an aluminum alloy
 - Low cost
 - Acceptable but not best in class smoothness
 - Soft easily damaged
 - For small diameter disks glass or ceramics can be used
 - These can be made very smooth, but can be brittle for larger sizes

- Disks
 - Magnetic Layer
 - Magnetic material composed of grains of magnetic domains
 - Smaller grains
 - Give better areal density
 - Less magnetically stable
 - Gamma ferric oxide, cobalt modified GFO, Chromium Dioxide, Barium ferrite
 - Deposited through thin-film sputtering
 - Allows for thin layers → sharper transitions

Disks

- Ni-P sublayer
 - Harder than AL
 - Allows for better polishing
- Cr Underlayer
 - Interface for the magnetic coating
 - Better microstructure than Ni-P
- Magnetic Layer
- Carbon overcoat
 - Protects the magnetic material from corrosion
 - Prevents scratches and other damage
- Lubricant
 - Prevent wear between head and disk should they touch

Lubricant	1
Carbon Overcoat	1
CO+Cr+ Magnetic Layer	2
Cr Underlayer	5
Ni-P Sublayer	1
AL-Mg Substrate	

1nm 10nm

25nm

50nm

10Knm

Spindle Motors

- DC Motors
 - Spindle integrated into the motor
 - 3-phase, 8 pole typical
 - Servo controlled
- Requirements
 - High reliability
 - Operate for many years
 - Hundreds of thousands of start/stop cycles
 - Low vibration / wobble
 - Prevent head slaps
 - Keep tracks aligned through rotation

- Write Head
 - Inductive write head
 - Ring (core) of magnetically soft material
 - Small gap at one end
 - Conductor wrapped around a portion of the ring

Write Head

Inductive write head

Write Head

Small gap → higher linear density (bits per inch)
 → smaller side fields → higher tracks per inch

- Narrow head → higher number of tracks per inch
- Material needs high flux density to overwrite the disk material
- Low electrical inductance for fast bit transitions
- Mechanically strong for the occasional head slap
- Light weight to make it easy to support at the end of the head arm

Write Head

Thin Film – Inductive write head

- Read Head
 - Can use the write head for reading
 - Changes in the magnetic field on the disk cause a change in the magnetic flux of the head
 - Changes in magnetic flux cause a voltage to be induced in the coil
 - The voltage is then read by the read circuitry
 - No longer used!

- Read Head
 - Magnetoresistance
 - Electrical resistance of a material changes when the material is subjected to an external magnetic filed

$$\Delta R = C_{MR} \cdot R \cdot \cos^2 \theta$$

R = nominal resistance

 C_{MR} = magnetoresistive coefficient ~ 2-3 %

 θ = angle between the resulting internal magnetic field and the direction of current flow

- Read Head
 - MR Read Head

- We are looking for transitions → external field is up or down
- Bias the easy axis to 0° wrt. the direction of current flow during manufacturing
 - This puts ΔR at max in the middle of a bit
 - This puts ΔR at min at the transitions
- Sense the change in voltage to read whether a transition has happened or not
- Physically shielded to ensure only one transition is detectable at a time

Max ΔR (No component vertical wrt current flow - 0°)

- Read Head
 - Giant Magnetoresistive Read Head (GMR)
 - Uses semiconductor technology to create stacked layers
 - ΔR is 5-8% vs 2-3% for MR \rightarrow more sensitive

- Read/Write Head
 - Combine the best of read and write technology
 - Able to optimize both independently

- Read/Write Head
 - Read head in front of write head
 - Write wide read narrow
 - Write head is wider than read writes a wider track
 - Read head placement does not need to be perfect
 - Builds in a guard band for noise

- Track pitch = write width + guard band
 - Guard band protects adjacent tracks from being overwritten

Cross-track profile

Down-track profile

- Write Head
 - Inductive write head

SEM x-section image

- Read/Write Head
 - Tracks per inch (tpi)
 Tpi = 1/track pitch = 1/(W + guard band width)
 W = write width
 Guard band << W
 - Flux change density
 - Density of transitions
 - 1/B, where B is the bit length
 - Bits per inch (bpi)
 - Assuming no coding 1/B
 - W to B ratio is approximately 4:1

Read/Write Head

- Slider
 - Holds the R/W heads in position over the disk
 - Ride hydrodynamically on a cushion of air air bearing
 - Tuned to provide an optimum flight height
 - Difficult due to the fact that the air is moving at different speeds at different radii.
 - Rotates to a ramp when drive is not spinning so the head does not contact the ramp.

- Actuator
 - Electromechanical actuator
 - Rotates the sliders back and forth across the disk

Actuator

Movie