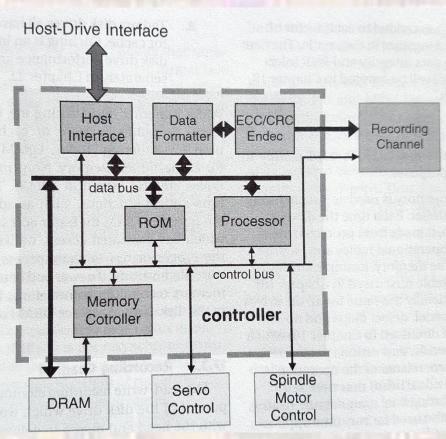
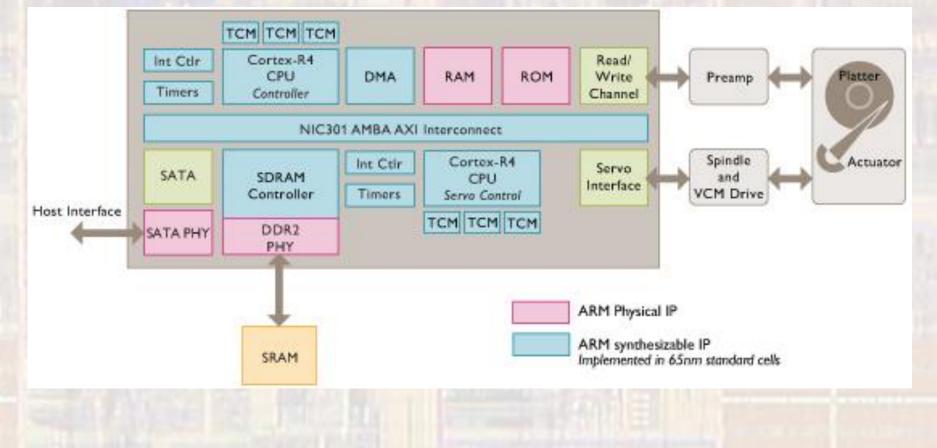
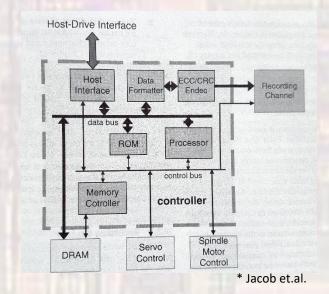

Hard Disk Drives II

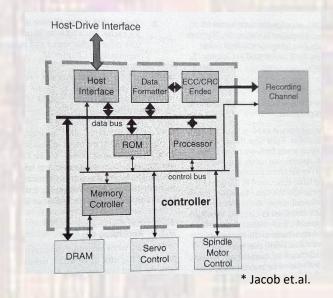

Last updated 2/5/20

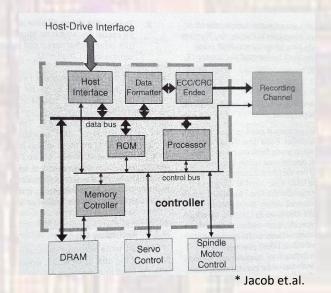
Electronics

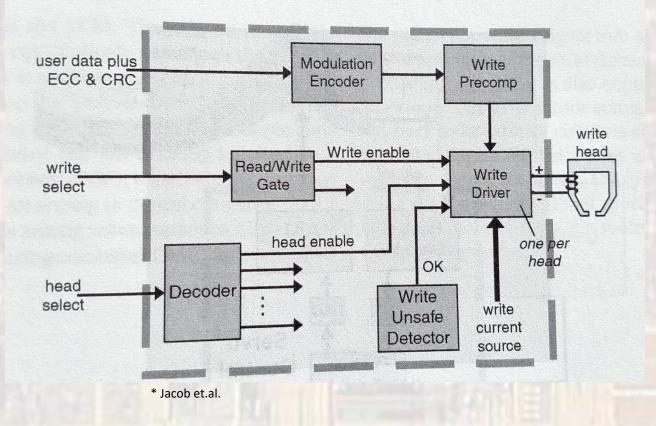


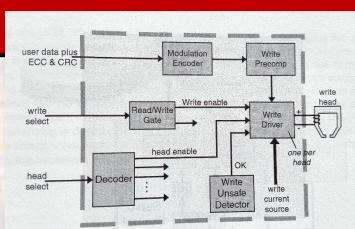
HDA – Head Disk Assembly AEM – Arm Electronics Module VCM – Voice Coil Module


Controller

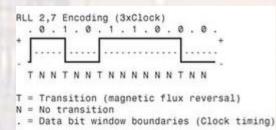

Controller

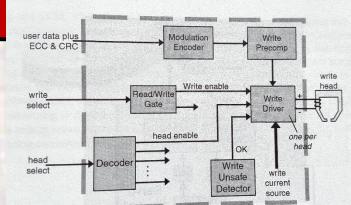

- Controller
 - Processor
 - Microcontroller (Arm Mx)
 - Manages the actions of the HDD
 - ROM
 - Stores firmware
 - Memory Controller
 - Manages the DRAM interface
 - DMA
 - Cache controller


- Controller
 - Host Interface
 - Manages the external interface
 - Control registers
 - IDE, PATA, SCSI, SATA, SAS, USB
 - Data Formatter
 - Moves data to/from memory
 - Manages sector size
 - ECC/CRC
 - Adds error checking and correction bits
 - Checks for errors and performs correction


- Controller
 - DRAM
 - Processor operational memory
 - Buffer memory for R/W process
 - Disk Cache

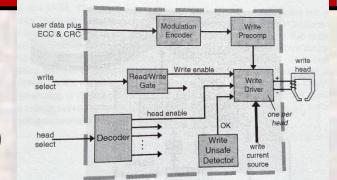
Recording Channel – write mode

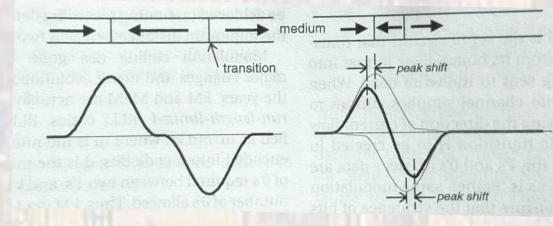

- Recording Channel write mode
 - Modulation Encoding



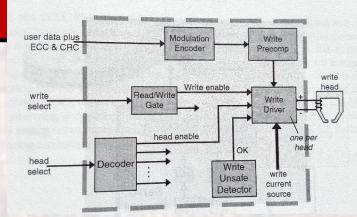
© tj

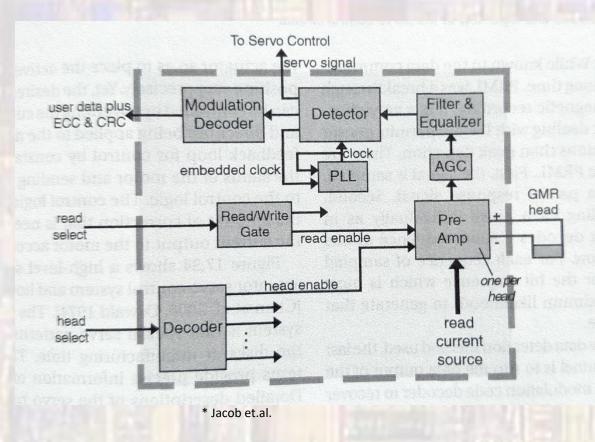
- Encodes the data to meet certain requirements
 - Sufficient transitions to allow clock recovery on reads
 - Limit errors on 1 bit from propagating indefinitely
 - Provide high data to coding ratio
- NRZI non-return to zero inverted
 - O represented by no transition
 - 1 represented by transition
 - Lacks any limit on 0's in a row → loss of clock


- Recording Channel write mode
 - Modulation Encoding
 - RLL Codes Run Length Limited
 - Limits the number of consecutive 0's or 1's •
 - m/n(d,k)
 - m = # of data bits
 - n = # of encoded bits
 - d = minimum # of O's (N's) required between two 1's (T's)
 - k = maximum # of O's (N's) allowed in a row
 - Data Rate (DR) = (d+1)*m/n



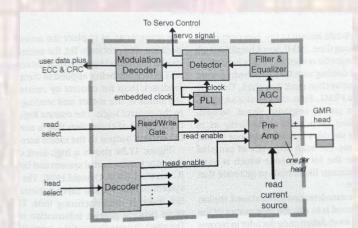
RLL 2,7 Data-to-Flux Transition Encoding				
Data Bit Values	Flux Encoding			
10	NTNN			
11	TNNN			
000	NNNTNN			
010	TNNTNN			
011	NNTNNN			
0010	NNTNNTNN			
0011	NNNNTNNN			
T = Flux transition, N = No flux transition				

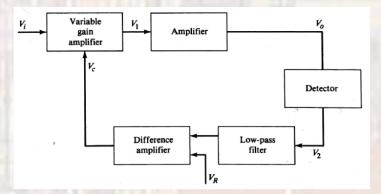

- Recording Channel write mode
 - Write Pre-compensation (equalization)
 - Reduce Inter-Symbol-Interference


• Delay 1st transition and speed up 2nd transition

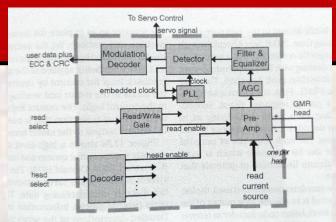
- Recording Channel write mode
 - Logic
 - Read/write
 - Correct track
 - Which head

* Jacob et.al.

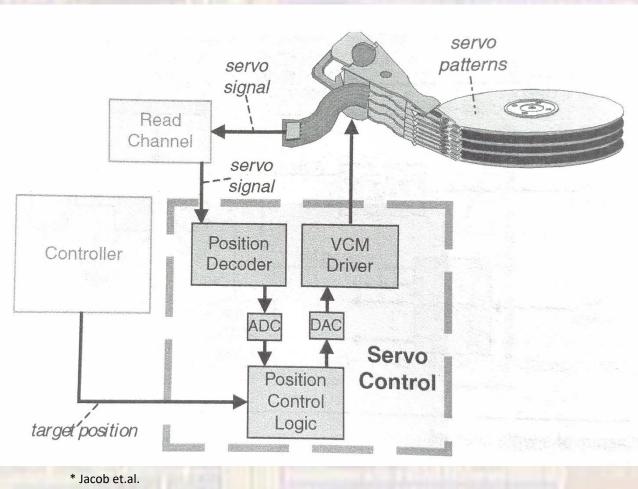

Recording Channel – read mode



- Recording Channel read mode
 - Pre-amp
 - Typical GMR signals < 1mV
 - Add gain to get a manageable signal level


• AGC

- Automatic gain control
- Set peaks to a given desired value
- Filter & Equalizer
 - Reduce high frequency noise
 - Sharpen pulses



- Recording Channel read mode
 - Detector
 - PRML partial response maximum likelihood
 - Sample signal partial response
 - Look at several bits worth of samples at a time
 - Choose the most likely bit pattern maximum likelihood
 - Pick off the servo bits → Servo Controller
 - Use all bits \rightarrow PLL \rightarrow Clock
 - Pick off data bits → Decoder
 - Decoder
 - Reverse the RLL encoding

Servo Controller

• Data


- Data is stored in Fixed size blocks
 - 512 Bytes (user data)
 - ~ 544 Bytes after encoding
 - ~ 40 Bytes of ECC
 - ~ 2 Bytes of CRC
 - ~ 590 Bytes total for data
 - Some systems support 4KB user data blocks

- Overhead
 - Preamble (sync)
 - 10 bytes
 - Establish a baseline for the clock recovery PLL
 - Used to get AGC in range

Data Sync (address mark)

- Special pattern 3-4 bytes
- Indicate beginning of data
- Flush Pad
 - Extra bytes at the end to gracefully terminate the read channel at the end of the read

- Sector
 - Data + overhead
 - Fixed size

Sector

- Logical Sector
 - The size the host expects for data
 - 512B or 4KB
- Physical Sector
 - The actual size the hard drives uses for sectors
 - The hard drive can collect multiple groups of data into a single entity
 - 4 512B host data blocks \rightarrow 1 2K data block on the disk
 - Only 1 set of overhead for 4 host data blocks \rightarrow higher density on disk
 - Must always look like 512B or 4KB at the external interface

Sector

Physical sector size tradeoffs

- Sequential sector configuration
 - Large files expect to be stored in sequential sectors
 - R/W over time leaves file size holes in the sector mapping
 - Large files cannot find big enough holes
 - Over time lots of small holes get created External Fragmentation

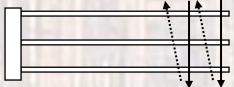
→ Logically sequential blocks and physically non-contiguous sectors

- Large sector sizes
 - Small files or the ends of large files may not fill the sector Internal Fragmentation

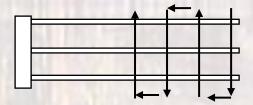
- Sector
 - Host has a file of X size (sequential)
 - The controller breaks the file into 512B blocks (sequential)
 - The controller maps the N 512B blocks into N physical sectors (non-contiguous)

- Tracks and Cylinders
 - Tracks
 - Concentric circles
 - Spiral
 - Track pitch < 20u inches
 - Sectors are numbered 1- N on any given track
 - Tracks are numbered 0 M, with 0 at the outside edge
 - Cylinder
 - All the tracks with the same ID number up and down the stack
 - Some cylinders at the very outside edge are reserved for system use and are not available for data

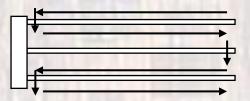
- Sector Addressing
 - Internal Addressing
 - Each sector on the disk has a unique identifier (number) from 0 to N-1 where N is the total number of sectors on the disk drive
 - Also called Physical Block Address or Absolute Block Address
 - Each sector also has a CHS address
 - Cylinder
 - Head
 - Sector
 - Represents the sector in 3-D space

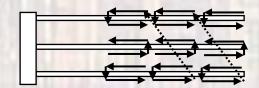

Both of these have been replaced with a method called GPT

- Sector Addressing
 - External Addressing
 - Logical Block Address
 - Host uses the logical address for the block
 - Controller maps the logical block address to a physical block address (PBA) in CHS format

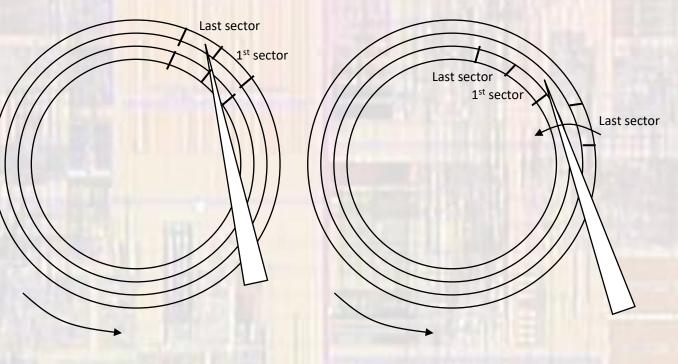

© tj

- Sector Addressing
 - Logical to Physical Mapping
 - Sequential logical blocks naturally map to sequential physical sectors

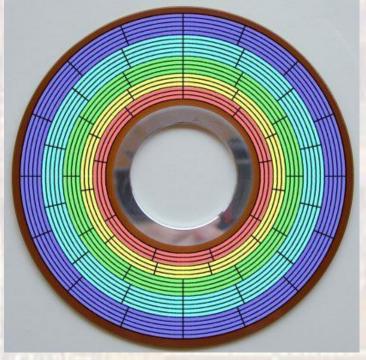

until the end of a track is reached

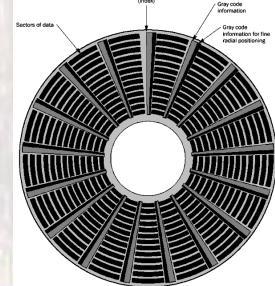


- Cylinder mode
 - Go to the next track in the same cylinder



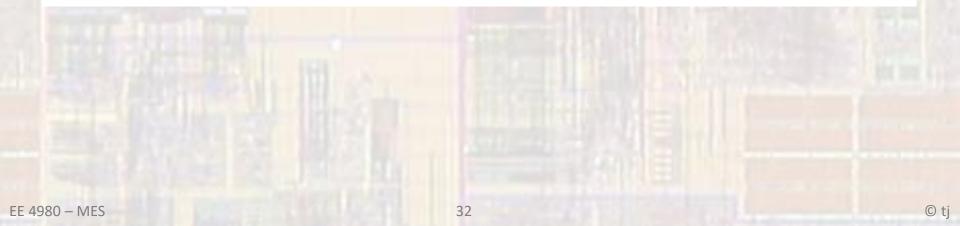
- Sector Addressing
 - Logical to Physical Mapping
 - Serpentine Format
 - Advance through tracks on a single disk
 - Banded Serpentine


- Sector Addressing
 - Skewing
 - Stagger the first sector of each track relative to it's predecessor
 - Track Skew and Cylinder Skew


- Cylinder Speed
 - Constant angular velocity
 - Difficult to modulate the rotational speed of the disk fixed RPM
 - Fixed RPM → differences in linear speed for different tracks
 - Put the same number of sectors in each track
 - Constant bit rate
 - Poor bit density as you go further out
 - Use a fixed linear bit density
 - More sectors as you go out
 - Different bit rates higher at the outside

© tj

- Zoned-Bit Recording (ZBR)
 - ZBR
 - Compromise between fixed number of sectors and fixed linear bit density
 - Fixed linear density
 - Limited number of different bit rates



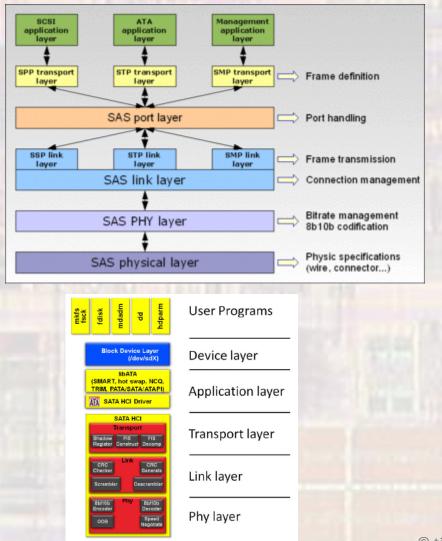
- Servo
 - How does the drive align the head with the tracks?
 - Dedicated Servo
 - One surface of one platter is dedicated to servo control
 - Special patterns allow the servo head to align and identify it's location
 - Embedded Servo
 - Stripes on the surface of each disk
 - Special patterns allow each head to align and identify it's location

Performance

	ST4000NM0023 ST4000NM0043	ST3000NM0023 ST3000NM0043	ST2000NM0023 ST2000NM0043	ST1000NM0023 ST1000NM0043
	ST4000NM0063	ST3000NM0063	ST2000NM0063	ST1000NM0063
Drive capacity	4TB	3TB	2TB	1TB (fomatted, rounded off value)
Read/write data heads	10	8	5	3
Bytes/track	1,668,096			Bytes (average, rounded off values)
Bytes/surface	400,000			MB (unfomatted, rounded off values)
Tracks/surface (total)	320,800			Tracks (user accessible)
Tracks/in	305,000			TPI (average)
Peak bits/in	1,904,000			BPI
Areal density	578			Gb/in2
Internal data rate	2210			Mb/s (max)
Disk rotation speed	7200			RPM
Avg rotational latency	4.16			ms

Performance

Maximum Internal data rate*	2.21 Gb/s
Sustained transfer rate	83 to 175 MB/s **
SAS Interface maximum instantaneous transfer rate	600MB/s* per port (dual port = 1200MB/s*)
Logical block sizes	
512 (default), 520 or 528.	
Read/write consecutive sectors on a track	Yes
Flaw reallocation performance impact (for flaws reallocated at format time using the spare sectors per sparing zone reallocation scheme.)	Negligible
Average rotational latency	4.16ms


Performance

Models	ST6000DM001, ST5000DM002	ST4000DM000
Interface	SATA	
Recording method	TGMR	
Recording density (kFCI)	1981	1807
Track density (ktracks/inch avg)	320	
Areal density (Gb/in ²)	633	625
Internal data transfer rate (Mb/s max)	1981	1813
Average data rate, read/write (MB/s)	180	146
Maximum sustained data transfer rate, OD read (MB/s)	220	180
I/O data-transfer rate (MB/s max)	600	

- Interface
 - Historical
 - IDE, PATA, SCSI
 - Parallel Interfaces

Current

- SATA, SAS (Serial SCSI)
- Serial Interfaces
- Point to point
- Protocol Based

