
EE 4980 Modern Electronic Systems

HW₂

Create a truth table for the circuit below (assume DC) Use:1, 0, z for tristate, x for unknown but 0 or 1, u for unknown

You are responsible for the clock design for a new processor.

Determine the maximum parasitic capacitance allowed on the clock line CLK

20 pts

Design Requirements:

Target operating frequency: 2.5GHz

45 mW of power has been allocated for your clock signal: CLK

Known values:

Operating voltage: 1.2V

Static power used in your design: 0.5mW

Short circuit power used in your design: 2mW @ 2.5GHz

Flip-Flop clk input capacitance: 0.2pF

Total # of FF on the CLK line: 50

You have been tasked with determining if supplier A is asking a fair price for a new part you want to buy. Your company has spent money with a 3rd party company to get cost estimate information about the part in question. Determine the expected price for the part.

30pts

Information from the 3rd party:

Wafer cost: \$2500

Raw wafer yield: 97%

Defect density: 0.15defects/cm2

 $\alpha = 15$

Package Cost: \$0.005/ball

Packaged part yield:96%

Acceptable margin for company A:

40%

Die size: 95mm2

Parametric yield: 96%

Package: 32x32 ball BGA

 $Y_0=1$

200mm wafer

260 die per wafer

Determine the processor in your laptop and the nominal operating frequency Search for it in the PassMark database and provide its 10pts

CPU Mark

Rank

Cost

Search and Think 30pts

FinFET devices typically utilize "dummy" fins and gates in their design – provide a short description of why?

FinFETs are clearly the technology of the near future – identify the impact these devices might have on **analog** integrated circuit designs