EE 4980 Modern Electronic Systems

HW 6

Consider a 5 in $\times 5$ in, 4 wire resistive touch screen, given the following measurements, locate the touch point:
Assume: resistivity $=1 \mathrm{~K}$ ohm / inch
Drive voltage $=7 \mathrm{~V}$ at top and right
Y measurement $=2.77 \mathrm{~V}$
X measurement $=1.43 \mathrm{~V}$
Define the origin at the lower left corner

Consider a projective capacitance touch screen (4 wide by 3 high) using the mutual capacitance approach. Determine the expected measured voltage for each column with row 1 selected and with row 2 selected 30pts Assume: total row/column to ground capacitance $=100 \mathrm{fF} /$ row or column mutual capacitance between R/C sensors $=15 \mathrm{fF} /$ edge Active row $=3 \mathrm{v}$ All idle rows grounded
Touch (black oval) - reduces the mutual capacitance to 5fF/edge

Using the 4T APS shown in class(p23), what value would you expect on the output of the source follower:
Assume: unity gain on the source follower, $\mathrm{Vgs}=0.55 \mathrm{v}$
C sense amp $=0.5 \mathrm{pF}$
Diode Area $=6 u m \times 6 u m$
Idark $=10 \mathrm{pA} / \mathrm{cm}^{2}$
I generated $=5 \mathrm{pA}$
Reset voltage $=3 \mathrm{~V}$
electronic shutter open for 10 ms after reset removed ignore all parasitic elements
ideal sampling switch and output switch

Part of what is transmitted in a satellites GPS packet is the time at which the packet is transmitted(according to the satellite) and the satellite's position in 3space. The receiver then compares it's time to the decoded transmit time to determine the transit time for the signal. Assuming the satellite times are correct, calculate the receiver location (x, y, z) and the receiver time error $t_{\text {error }}$, given:

Use $\mathrm{C}=186,282 \mathrm{mi} / \mathrm{sec}$

sat1:	$t_{11}=2: 2: 20.15$,	$x=1000 \mathrm{mi}, \mathrm{y}=2000 \mathrm{mi}, \mathrm{z}=11000 \mathrm{mi}$
sat2:	$\mathrm{t}_{12}=2: 2: 20.16$,	$x=2000 \mathrm{mi}, \mathrm{y}=1500 \mathrm{mi}, \mathrm{z}=11010 \mathrm{~m}$
3:	$\mathrm{t}_{13}=2: 2: 20.155$	$x=-2000 \mathrm{mi}, \mathrm{y}=-1250 \mathrm{mi}, \mathrm{z}=1100$
4:	$\mathrm{t}_{44}=2: 2: 20.16$	$x=-2200 \mathrm{mi}, \mathrm{y}=1040 \mathrm{mi}, \mathrm{z}=11007$

Receiver:
$\mathrm{t}_{\mathrm{r} 1}=2: 2: 20.207784552$
$\mathrm{t}_{\mathrm{r} 2}=2: 2: 20.218089877$
$t_{r 3}=2: 2: 20.213994840$
$\mathrm{t}_{\mathrm{r} 4}=2: 2: 20.223684855$

