SDRAM

Last updated 3/1/21

Memory Taxonomy

- SDRAM Synchronous Dynamic Random Access Memory
 - Memory cell (1 bit) is based on capacitor charge storage
 - Bit value decays over time
 - must be recharged called a refresh cycle
 - Standard SDRAM transfers 1 word each array access
 - DDR double data rate transfers 2 words each array access
 - DDR2, DDR3, DDR4 transfer 4,8,16 words each array access
 - Medium speed
 - Highest density
 - Used as main memory

• SDRAM - Cell

- SDRAM Synchronous Dynamic Random Access Memory
 - Write
 - All Word lines low
 - Read Enable (RE) disabled (low)
 - Place B0, B1, B2, B3 on inputs
 - Pull write enable bar (WE) low
 - Strobe the desired word line high
 - Bit lines write to the bit cell capacitors

© tj

- SDRAM Synchronous Dynamic Random Access Memory
 - Read
 - All Word lines low
 - Write enable bar (WE) high
 - inverters tristated
 - Read Enable (RE) high
 - Strobe the desired word line high
 - Sense amplifiers read the value of the capacitors
 - The read process is destructive !
 - WHY?

- SDRAM Dynamics
 - C_{cell} ~ 1/10 C_{bitline}
 - Charge redistribution → small voltage changes
 - Cell charge = Q_{cell} = +/- (Vdd/2 * C_{cell})
 - Bitline charge = Q_{bitline} = Vdd/2 * C_{bitline}
 - Assuming V_{bitline} precharged to Vdd/2

•
$$\Delta V = \frac{V_{dd}}{2} \times \left(\frac{C_{cell}}{C_{cell} + C_{bitline}}\right) = 0.045 V_{dd} = 122 \text{mV} @ 2.7 \text{V}$$

- SDRAM Dynamics
 - Use a differential amplifier for sensing
 - But what is the second input?
 - Break the array into pieces
 - Precharge all bitlines
 - Compare a bitline from selected wordline to one from a non-selected wordline
 - Open Bitline array
 - Control the signal swing by size of bitline segments
 - Compare precharged non-word selected bitlines with small swing word selected bitlines
 - Alternate configurations include folded and twisted
 - Less dense but offer better noise characteristics
 - Trade off size of segments for # of sense amps

- SDRAM Sense amplifier
 - Phase 0 PRECHARGE

- SDRAM Sense amplifier
 - Phase 1 ACCESS

- SDRAM Sense amplifier
 - Phase 2 SENSE (and Restore)

- SDRAM Sense amplifier
 - WRITE

- SDRAM Pipelining
 - Allow next read/write process to start while current r/w is in process
 - With proper timing you can achieve 100% throughput on
 - Access to a new column on an open row
 - Opening a new row on an alternate bank

More to come

© tj

- SDRAM Strobe Based Data Bus
 - Very high operating speeds lead to concerns about
 - Trace lengths, transmission line effects, clock skew, ...
 - Add a strobe signal for every output beat (DQS)
 - On reads
 - Strobe is generated by the SDRAM edge aligned with the data
 - MMU offsets the strobe by 90 degrees and uses it to capture the data
 - On writes
 - Strobe is generated by the MMU and offset by 90 degrees wrt data
 - SDRAM uses the strobe to capture the write data
 - Strobes include a preamble, postamble and write leveling

- SDRAM On Die Termination (ODT)
 - Very high operating speeds lead to concerns about
 - Trace lengths, transmission line effects, clock skew, ...
 - Place programmable resistors on die to terminate the transmission lines for critical signals, DQ, DQS, CLK

SDRAM – Write Leveling