
Processors - Basics

Last modified 4/20/20

2 © tjEE 4980 – MES

Program Elements

• Tool Chain

Code Entry PreProcessor Compiler Assembler

Linker Loader

3 © tjEE 4980 – MES

Program Elements

• Tool Chain

• CodeEntry

• filename.c

• Text editor

• Integrated Development Environment
• Code Composer

• Eclipse

Code Entry

4 © tjEE 4980 – MES

Program Elements

• Tool Chain

• Preprocessor

• Deals with any commands starting with #

• Tells the tool chain to include additional libraries

• Replaces any “defines” throughout the code

• Expands macros throughout the code

• Manages any conditional defines

PreProcessor

5 © tjEE 4980 – MES

Program Elements

• Tool Chain

• Compiler

• Converts c-code to assembly language

• Assembly language
• Architecture specific programming language

• Direct access to specific registers, commands, memory

ldi R2, 5; // load register R2 with the value 5

sts R2, 0x0200; // copy the value in R2 to memory location 0x200

add R2, R1; // add the values of R2 and R1 and store in R2

Compiler

6 © tjEE 4980 – MES

Program Elements

• Tool Chain

• Assembler

• Converts assembly language to machine language

• Result is an object file (file.o)

• Machine language
• Part specific programming language

• Binary representation that the processor understands

1001 1000 1010 1101 // load register R2 with the value 5

1100 1011 1001 1100 // copy R2 to memory location 0x200

1100 1010 1100 0011 // add R2, R1 and store in R2

Assembler

7 © tjEE 4980 – MES

Program Elements

• Tool Chain

• Linker

• Combines the machine language code from your program with all
included libraries

• Configures all the code in memory
• Aligns code segments

• Makes connections where necessary (function calls)

• Assigns variables spots in memory

• Creates an executable file - file.out (file.exe for windows systems)

Linker

8 © tjEE 4980 – MES

Program Elements

• Tool Chain

• Loader (programmer)

• Creates whatever environment is necessary on the executing
machine

• Loads the executable program

• Starts the program

Loader

9 © tjEE 4980 – MES

• Simplified Processor Structure

• Program Counter
• Holds the memory address for the next instruction

• Program Memory
• Holds the program instructions

• Decoder
• Converts instructions (machine code) into control signals

• Register File
• Local working memory (for ALU)

• ALU
• Arithmetic Logic Unit
• Does “calculations”

• Data Memory
• Holds data for future processing

Simple Data Path

10 © tjEE 4980 – MES

• 5 Stages of Instruction Execution

• Fetch (IF)

• Decode / Register Access (ID)

• Execute (EX)

• Memory Access (MEM)

• Write Back (WB)

Simple Data Path

11 © tjEE 4980 – MES

Simple Data Path

• Instruction Fetch

• Clock the PC

• New address is provided to the memory

• Memory provides instruction to its output

• Next address is provided to PC input
• Memory is Byte Addressed

• Instructions are 4 bytes wide

• → increment by 4

12 © tjEE 4980 – MES

• Instruction format (MIPS)

Simple Data Path

Immediate / Load/Store

Jump

Register - Register

13 © tjEE 4980 – MES

Simple Data Path

• Instruction format (MIPS)

14 © tjEE 4980 – MES

Simple Data Path

• Instruction format (MIPS)

15 © tjEE 4980 – MES

Simple Data Path

• Instruction format (MIPS)

add $S0, $T2, $S3 -- add register T2 to register S3 and store result in register S0

000000 01010 10011 10000 00000 100000
0000 0001 0101 0011 1000 0000 0010 0000
0x01538020

16 © tjEE 4980 – MES

Simple Data Path
• Decode / Register Access

• Decode
• Use first and last 6 bits of the instruction

• Register Access
• R format instructions use at most:

2 source registers and
1 destination register

• I format instructions use:
immediate: 1 src, 1 dest
load/store: 1 src or 1 dest
branch: 2 src

• J format instructions do not use registers

Control
12

Instruction
Control
Signals

17 © tjEE 4980 – MES

Simple Data Path

• Execute

• ALU executes all arithmetic and logical instructions

• Inputs are Registers or Immediates
• Immediates are contained in the instruction

add $S0, $T1, 24

18 © tjEE 4980 – MES

Simple Data Path

• Memory Access

• Load / Store Instructions

lw $t4,4($t0) # load $t4 from memory location ($t0)+4

• Address is calculated by adding the offset to the value in a
register
• Use the ALU to add register value to the offset

• Since the offset is only 16 bits and is in 2’s compliment format
• Must sign extend the offset to 32 bits

Sign extension is trivial – Why?

19 © tjEE 4980 – MES

Simple Data Path

• Write Back

• Write results or memory value back to a register

• Write data comes from ALU (result)

or

• Write data comes from data memory

20 © tjEE 4980 – MES

Simple Data Path

• Missing Pieces – branches

• Read register operands

• Compare operands
• Use ALU, subtract and check Zero output

• Calculate target address
• Sign-extend displacement

• Shift left 2 places (word displacement)

• Add to PC + 4
• Already calculated by instruction fetch

shift left 2 is trivial – why?

What about the bits that shift off the end?

21 © tjEE 4980 – MES

Simple Data Path

• Full Datapath

22 © tjEE 4980 – MES

Simple Data Path

• Datapath Control

23 © tjEE 4980 – MES

Simple Data Path

• Datapath Control – Rtype Instruction

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

24 © tjEE 4980 – MES

Simple Data Path

• Datapath Control – LW Instruction

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW 0 1 1 1 1 0 0 0 0

25 © tjEE 4980 – MES

Simple Data Path

• Datapath Control – BEQ

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW X 0 X 0 0 0 1 0 1

26 © tjEE 4980 – MES

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.
Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location 0x1220,
use x for unknown

A B F

G

H

I

J

Bus/Wire Value (hex)

A

B

C

D

E

F

G

H

I

J
C

D E

27 © tjEE 4980 – MES

A B F

G

H

I

J

Bus/Wire Value (hex)

A

B

C

D

E

F

G

H

I

J

0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

add Rd,Rs,Rt

2 02 1 7 7 9 8

OP RS RT

add T3 S7

0x08 11 23

Funct

0x20

0x20

RD

S3

19

Shamt

0

C

D E

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.
Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location 0x1220,
use x for unknown

28 © tjEE 4980 – MES

A B F

G

H

I

J

Bus/Wire Value (hex)

A 1220

B B

C 17

D 13

E 13

F 0000 DCBA

G 0000 4321

H 0001 1FDB

I 0001 1FDB

J 1224
C

D E

0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

11 23

Funct

0x20

0x20

RD

S3

19

Shamt

0

add Rd,Rs,Rt

2 00 1 7 7 9 8

OP RS RT

add T3 S7

0

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.
Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location 0x1220,
use x for unknown

29 © tjEE 4980 – MES

Simple Data Path

• MIPS Greed Card

