
Processor Architecture
Caches

Last modified 4/20/20

2 © tjEE 4980 – MES

Cache Basics
• Memory Hierarchy Considerations

• Typical System

Registers

Cache (SRAM)

Main Memory (DRAM)

Storage (HDD or Flash)

• Advanced systems may have 2,3,4 levels of cache
• Each is progressively slower and larger
• Size is targeted at holding entire applications

3 © tjEE 4980 – MES

Cache Basics
• Memory Hierarchy Considerations

• Typical System - 2GHz

Registers - 1 Clk access

Cache (SRAM) – 1 – 10 Clk access

Main Memory (DRAM) – 50 Clk access

Storage (HDD or Flash) – 10,000 Clk access

• Advanced systems may have 2,3,4 levels of cache
• Each is progressively slower and larger
• Size is targeted at holding entire applications

4 © tjEE 4980 – MES

Cache Basics

• Memory Hierarchy Considerations

CPU accesses something
already in the cache

1 clk

HDD

Main

Cache

CPU

5 © tjEE 4980 – MES

Cache Basics

• Memory Hierarchy Considerations

CPU accesses something
not in cache, but in main
memory

1 + 50 + 1 clks

HDD

Main

Cache

CPU

6 © tjEE 4980 – MES

Cache Basics

• Memory Hierarchy Considerations

CPU accesses something
not in cache or main memory,
but on the HDD

1 + 50 + 10,000 + 50 + 1 clks

HDD

Main

Cache

CPU

7 © tjEE 4980 – MES

Cache Basics

• Cache Overview

• Closest memory to the CPU

• SRAM
• Fast

• Not too large (Kbytes)

• Must MAP a larger address space into a small memory
• Direct Mapped

• Set Associative

8 © tjEE 4980 – MES

Cache Basics

• Direct Mapped Cache

• Every higher level memory location is mapped to a single
cache memory location

9 © tjEE 4980 – MES

Cache Basics
• Direct Mapped Cache

• Cache size is built to be a power of 2

• Cache block =
(Block Address) mod (# of cache blocks)

• Eg. Assume a 256 block cache
Where does the memory block from address 0x2A3F map to?

0x2A3F mod 25610 = 0x3F = 6310

• As long as we follow this convention (cache size = 2n)

• Cache block address = last n bits of the memory address*

* for 1 byte block sizes

10 © tjEE 4980 – MES

Cache Basics

• Direct Mapped Cache
• 8 block cache, 1byte/block, 16 bit address space

Index Valid Tag Data (1 byte)
0

1

2

3

4

5

6

7

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

Index
Tag

13 3

11 © tjEE 4980 – MES

Cache Basics

• Direct Mapped Cache
• 8 block cache - Write

Index Valid Tag Data (1 byte)
0

1

2

3

4

5 1 Data A

6

7

1 0 … 0 1

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

IndexTag

Data Bus

8

12 © tjEE 4980 – MES

Cache Basics

• Direct Mapped Cache
• 8 block cache - Read

Index Valid Tag Data (1 byte)
0

1

2 1 Data C

3 1 Data B

4

5 1 Data A

6

7 1 Data E

0 1 … 0 1

1 0 … 1 1

1 0 … 0 1

1 0 … 0 1

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

IndexTag

Data Bus

8

=
Hit

13 © tjEE 4980 – MES

Cache Basics

• Direct Mapped Cache
• 1K block cache, 1 word block, 32 bit data word, 32 bit address space

Index Valid Tag Data (4 bytes)
0

1

2

…

…

1021

1022

1023

31 … 13 12 11 … 2 1 0
32 bit address

1K Block Cache

IndexTag

Data Bus

32

=
Hit

20 10
Byte

Offset

14 © tjEE 4980 – MES

Cache Basics

• Cache Read Miss - Program Memory

• On a miss we do not have the requested program memory
value available (current instruction)

• In the mean time the PC has incremented (+4 for MIPS)

• We must stall the processor while we wait for the
instruction

15 © tjEE 4980 – MES

Cache Basics
• Cache Read Miss - Program Memory

• Actually have 2 control circuits (controllers)
• Processor controller
• Memory controller
• Separate due to timing and latencies associated with the memory

• Processor control will stall the processor
• Wait for a signal to restart

• Memory controller
• Sends the original program memory address to memory with a

read request (current PC - 4)
• When available: write data, tag, and valid bit in cache
• Signal the processor to restart at the fetch stage

16 © tjEE 4980 – MES

Cache Basics

• Cache Read Miss – Data Memory

• On a miss we do not have the requested data memory
value available (cannot complete the instruction - Load)

• We must stall the processor while we wait for the data

17 © tjEE 4980 – MES

Cache Basics
• Cache Read Miss - Data Memory

• Actually have 2 control circuits (controllers)
• Processor controller
• Memory controller
• Separate due to timing and latencies associated with the memory

• Processor Control will stall the processor
• Wait for a signal to restart

• Memory controller
• Sends the original data memory address to memory with a read

request
• When available: write data, tag, and valid bit in cache
• Signal the Processor to restart with the memory read

18 © tjEE 4980 – MES

Cache Basics

• Memory Consistency

• Our memory hierarchy needs to
remain consistent
• All levels must contain the same value

for a given memory location

• If not – which is right?

• Not a problem for reads

• Can be a problem for writes

19 © tjEE 4980 – MES

Cache Basics
• Write-through

• Simple approach to ensure memory consistency

• Every write to the cache → write to main memory

• Write Miss
• The desired memory value is not in the cache

• Read the desired memory value from main memory
• Write it into the cache
• Modify it (since this was started with a write instruction to begin

with)
• Write a copy back to main memory

20 © tjEE 4980 – MES

Cache Basics
• Write-through

• Simple approach – but very inefficient

• Every write to the cache → write to main memory
• Main memory writes are very slow (why we have a hierarchy)

• Example
• Main memory clock cycles/write = 100
• 1% of instructions are stores
• No-cache CPI = 1

1% of instructions will take 100 clock cycles

New CPI = 1 + 1 = 2 clocks/instruction
All that work to reduce the CPI has been foiled!

21 © tjEE 4980 – MES

Cache Basics

• Write-Back

• Alternative to write-through

• Only write back to main memory when the cache block is
being replaced
• And only when it is “dirty”, i.e. been changed

• Provides a similar performance advantage as the cache
read process
• 10% of instructions are writes but only 10% are cache misses,

leading to a write-back rate of 1%

22 © tjEE 4980 – MES

Cache Basics
• Write-back vs. Write-through

• Write-through
• Can write to the cache and determine if there is a miss at the same

time
• If hit – write is OK
• If miss – no harm since the value over-written has already been stored in

memory
• Process moves forward as usual – but only replacing the parts of the block

that were not just overwritten
• All writes can occur in 1 clock cycle

• Write-back
• Must write the block back to memory on a miss (and dirty)
• 2 clock cycles: one to determine hit or miss, one to initiate write back on

misses
• Or use a write buffer to pipeline the process → 1 clock cycle
• Or use a store buffer to hold the stored value while the write-back occurs

then updates the cache on the next available cache write cycle

23 © tjEE 4980 – MES

Cache Basics

• Split vs. Single Cache

• Single cache to support I and D
• Larger (same as 2 together) → better hit rate

• Allows more flexibility for how much is data and how much is
instruction

• consider a small program operating on a lot of data vs. a big program using
almost no data

• Split I and D cache
• Allows for concurrent I and D access – 2x bandwidth

• Far outweighs the flexibility advantage of a combined cache

Split Cache Combined Cache

Miss Rate Miss Rate

32KB 3.24% 3.18%

Cache Size

24 © tjEE 4980 – MES

Cache Performance

• CPU performance

• CPU Time
• Clock Cycle Time x (CPU execution cycles + CPU stall cycles)

• CPU Stall Cycles
• Hazard stall cycles + Read stall cycles + Write stall cycles

• let Hazard stall cycles go to zero with various techniques

• CPU stall cycles = Memory stall cycles = Read stall cycles + Write
stall cycles

25 © tjEE 4980 – MES

Cache Performance

• CPU performance

• Read Stall Cycles
• Stalls due to read misses

• Read stall cycles =
Reads

Program
× Read miss rate × Read miss penalty

26 © tjEE 4980 – MES

Cache Performance
• CPU performance

• Write Stall Cycles (write through)
• Stalls due to write misses

and

• Write buffer stalls (buffer full)

• Write stall cycles =
Writes

Program
×Write miss rate ×Write miss penalty

+ Write buffer stalls

• Design our system to make Write buffer stalls negligible
• Fast L2 memory

• Deep write buffer

• Write stall cycles =
Writes

Program
×Write miss rate ×Write miss penalty

27 © tjEE 4980 – MES

Cache Performance
• CPU performance

• Read and Write miss penalty is the same

• In both cases the penalty is the time to read the value from memory

• Define a Miss Rate which measures the miss rate for memory
accesses – read or write

• Memory stall cycles =
Memory Accesses

Program
×Miss rate × Miss penalty

or

• Memory stall cycles =
Instructions

Program
×

Misses

Instruction
×Miss penalty

28 © tjEE 4980 – MES

Cache Performance
• CPU performance - example

CPIideal = 2
2% instruction miss rate
4% data miss rate
100 cycle miss penalty
36% of instructions are Loads or Stores

Instruction Miss Cycles = Icount x 2%miss/inst x 100cycles/miss
= 2 x Icount

Data Miss Cycles = Icount x 36%LS/inst x 4%miss/LS x
100cycles/miss

= 1.44 x Icount

29 © tjEE 4980 – MES

Cache Performance

• CPU performance – example cont’d

Memory Stall Cycles = 2 Icount + 1.44 Icount = 3.44 Icount

This is almost 3.5 stalls per instruction !!!

CPI = CPIideal + 3.44 clocks/inst = 5.44 clocks/inst

Only achieving 37% of the ideal performance

30 © tjEE 4980 – MES

Cache Performance

• CPU performance – example cont’d

If we improve the processor to a CPIideal = 1 (better
pipeline)

CPI = CPIideal + 3.44 clocks/inst = 4.44 clocks/inst

This improves the performance – but not linearly

Only achieving 22.5% of the ideal performance

31 © tjEE 4980 – MES

Cache Performance

• CPU performance

• We have assumed a 1 clock cycle Hit time – this may or
may not be true

• Use the Average Memory Access Time to measure
performance

• AMAT = Time for a hit + (Miss Rate x Miss penalty)
seconds

or

AMAT = Clock cycle time x (Hit Cycles + Miss Rate x Miss
Penalty)

32 © tjEE 4980 – MES

Cache Performance

• CPU performance - example

1GHz clock

1 cycle cache access time

5% miss rate

20 cycle miss penalty

AMAT = 1ns/clk x (1 clk/hit + 5% x 20clk/miss) = 2ns

33 © tjEE 4980 – MES

Cache Performance

• CPU performance

• Memory performance is critical to overall performance

• Impacts CPI

• Impacts AMAT

34 © tjEE 4980 – MES

Cache Performance

• Direct Mapped Cache

• Maps each memory location into a single cache location

Block

35 © tjEE 4980 – MES

Cache Performance

• Fully Associative Cache

• Maps each memory location to any cache block

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Block

36 © tjEE 4980 – MES

Cache Performance

• Fully Associative Cache

• Maps each memory location to any cache block

• Reduces the number of mapping conflicts

• Reduces the number of Misses

but

• Very inefficient
• Increases total number of bits

• Must search each tag field
• Increases the amount of compare logic

37 © tjEE 4980 – MES

Cache Performance

• Fully Associative Cache
• 1K block cache, 32 bit word

Index Valid Tag Data (4 bytes)
0

1

2

…

…

1021

1022

1023

32 31 … 13 12 11 … 2 1 0
32 bit address

1K Block Cache

Tag

Data Bus

32

=
Hit

30
Byte

Offset

x 1024

38 © tjEE 4980 – MES

Cache Performance

• Set Associative Cache

• Maps each memory location to a limited number of blocks

00010 00100 01010 01100 10010 10100 11010 11100

00 01 10 11

Cache

Memory

Set

39 © tjEE 4980 – MES

Cache Performance

• Set Associative Cache

• M block, N-way Set Associative Cache

• N-way → each set consists of N blocks

• M block → total number of blocks is M

• 64 block, 2-way set associative cache

• 32 sets of 2 blocks

• Each memory location can be mapped to 2 blocks

• There are 32 mapping groups

40 © tjEE 4980 – MES

Cache Performance
• Cache Comparison

• 64 Block Cache

• Direct Mapped
• block location = (block number) modulo (# of blocks)
• 1000 mod 64 = block 40

• 2-way Set Associative
• set location = (block number) modulo (# of sets)
• 1000 mod 32 = set 8

• Fully Associative
• looks like a 64-way set associative cache → 1 set
• 1000 mod 1 = set 0

41 © tjEE 4980 – MES

Cache Performance

• Cache Comparison

• 8 Block Cache

42 © tjEE 4980 – MES

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• Direct Mapped

Block Address Cache Block

0 0 mod 4 = 0

6 6 mod 4 = 2

8 8 mod 4 = 0

0 1 2 3

0 miss mem[0]

8 miss mem[8]

0 miss mem[0]

6 miss mem[0] mem[6]

8 miss mem[8] mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss

5 accesses
5 misses

43 © tjEE 4980 – MES

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• 2-way Set Associative

Block Address Cache Block

0 0 mod 2 = 0

6 6 mod 2 = 0

8 8 mod 2 = 0

0 miss mem[0]

8 miss mem[0] mem[8]

0 hit mem[0] mem[8]

6 miss mem[0] mem[6]*

8 miss mem[8]* mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss Set 0 Set 1

5 accesses
4 misses

* least recently used block

44 © tjEE 4980 – MES

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• Fully Associative

Block Address Cache Set

0 0 mod 1 = 0

6 6 mod 1 = 0

8 8 mod 1 = 0

0 miss mem[0]

8 miss mem[0] mem[8]

0 hit mem[0] mem[8]

6 miss mem[0] mem[8] mem[6]

8 hit mem[0] mem[8] mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss Set 0

5 accesses
3 misses

45 © tjEE 4980 – MES

Cache Performance

• Cache Comparison

• As associativity increases:

• Hit rate goes up

• Complexity goes up
• Cost

• Usually leads to slow down

• SPEC2000 benchmarks – 64KB Cache, 16 word block

46 © tjEE 4980 – MES

Cache Performance

• Cache Implementation

What configuration is this cache?

47 © tjEE 4980 – MES

Cache Performance

• Cache Implementation

What configuration is this cache?
256 x 4 blocks = 1K Block, 4 way
4 bytes/block → 4KByte, 4 way

48 © tjEE 4980 – MES

Cache Performance

• Replacement Policies

• Set associativity introduces the need to choose which
block to replace

• Random
• Implement pseudo-random block selection with-in a set

• Least Recently Used (LRU)
• Leverages temporal locality

• First-in, first-out (FIFO)
• Replace the oldest block

• Simpler than LRU but frequently results in similar performance

49 © tjEE 4980 – MES

Cache Performance

• Replacement Policies

• Data Cache Misses
• 1000 instructions, SPEC2000, Alpha Architecture

src. Computer Architecture, Hennessy and Patterson, 5th ed.

50 © tjEE 4980 – MES

Cache Performance
• Performance Review

• Bigger cache → fewer misses
• LRU < FIFO < Random - but differences small
• Associativity reduces misses for smaller caches – but

diminishing
• For large caches, associativity becomes less important

src. Computer Architecture, Hennessy and Patterson, 5th ed.

Data misses / 1000 instructions

51 © tjEE 4980 – MES

Cache Performance

• Single level Cache Issues

• Cache miss penalties are very high when a miss goes to
main memory
• Many stall cycles

• Large caches are slower
• Slowing down the processor

→Multi-level Cache

52 © tjEE 4980 – MES

Cache Performance
• Multi-level Cache

• 2 on chip Caches
• Smaller – L1 cache
• Larger – L2 cache

• L1
• Targeted at allowing the processor to run as fast as possible
• Focus is on hits
• Fewer ways
• smaller blocks

• L2
• Targeted at reducing the number of main memory accesses
• Focus is on misses
• More ways
• bigger blocks

53 © tjEE 4980 – MES

Cache Performance

• Multi-level Cache

• Local Miss Rate
• misses / access – for each cache level

• Miss rateL1, Miss rateL2

• Global Miss Rate
• misses / processor accesses

• Global miss rateL1 = Local miss rateL1

• Global miss rateL2 = Local miss rateL1 x Local miss rateL2

