Last modified 5/4/20

e Simple Datapath

EE 4980 — MES

PC

Add

RegDst
Branch

Add

| MemRead

| MemtoReg

Instruction [31-26]

Instruction [25-21]

Controll ALUOp

| MemWrite

| ALUSrc

RegWrite

_ | Read

Read
address

Instruction [20-16]

_ | Read

Instruction
[31-0]

Instruction

i (7

Instruction [15—11]

memory

0
M
u
X

1

Instruction [15-0]

register 1 Roaq

data 1
register 2

Write Read

Read

0 Address

register data 2

Write
data Registers

16@32

data

=

Instruction [5-0]

2

© tj

5 Stages of Instruction Execution

Fetch (IF)

* Decode / Register Access (ID)
Execute (EX)

e Memory Access (MEM)
Write Back (WB)

Pipeline these at 1 stage each

EE 4980 — MES 3

© tj

* Pipelining

No Pipeline

Clock Cycle
0 1 D 3 4 5

Waiting
Instructions

CPU Execute
D
Retired C
Instructions A B
A
4us 4us 4us 4us 4us

Execute = fetch instruction, decode, execute, write back

EE 4980 — MES 4 © tj

* Pipelining
* Break complex tasks into smaller chunks

e Start the next instruction as soon as each subtask is

complete

Clock Cycle
Qo A1 LS ERawEIBNT © Sulde. BT 98

Waiting
Instructions

Fetch
Decode
Execute
Write back

Pipeline

Retired
Instructions

lus 1us 1us lus 1us 1us 1us 1us

EE 4980 — MES 5 © tj

* Pipeline Performance

* Pipelining does not reduce the time to execute an
Instruction
* In fact — it usually increases the instruction execution time

* Pipelining does increase the instruction throughput

Time
IF/ID/EX/MEM/WB

1000

1000

1600

1

2

(3)
.y

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF
ID
EX
MEM
WB

EE 4980 — MES

1

2
1

3
2

= N W

11
10
9
8

12
11
10
9
8

13
12
11
10

9

14
13
12
11
10

15
14
13

© tj

* Pipeline Performance

* Non-pipelined

e 1M Instructions = 1x10° units of time

 Pipelined (5 stage)
1M Instructions = 2x108 + 5*200 = 2x108 units of time

e Overall throughput improvement of 5x

EE 4980 — MES 7

© tj

* Pipeline Performance

* Non-pipelined

e 1M Instructions = 1x10° units of time

* Pipelined (5 stage w/20% penalty per stage)
e 1M Instructions = 2.4x108 + 5*2240 = 2.4x108 units of time

e Overall throughput improvement of 4.2x

EE 4980 — MES 8

© tj

* Pipeline Performance

e Pipeline stages typically do not all take the same amount
of time

Delay 200ps 100ps 200ps 200ps 100ps

* Non-pipelined instruction throughput = 1 inst / 800ps
* Pipelined (5 stage) instruction throughput = 1 inst / 200ps

* Overall throughput improvement of 4x

EE 4980 — MES 9 © tj

* Pipeline Performance

* Not all instruction need to use all the pipeline stages

EE 4980 — MES

ADD

OR

LW

SW

XXX |X|X

XXX |X|X

XXX |X|X

BEQ

© tj

* MIPS Pipeline Considerations

e All instructions are 32-bits
* Easier to fetch and decode in one cycle

* Few and regular instruction formats
* R I)J
e Can decode and read registers in one step - why?

* Load/store addressing
 Can calculate address in 3" stage, access memory in 4th stage

e Alignment of memory operands
 Memory access takes only one cycle

EE 4980 — MES 11 © tj

* Pipeline Operation

* The program memory, register file and data memory can
each be read or written

* We will use the following convention
e Writes occur in the first half of the clock cycle
* Reads occur in the second half of the clock cycle

How would we implement this?

EE 4980 — MES 12 © tj

* Pipeline Operation

WB actually occurs in the
first half of the next clock

cycle

. 200 400 600 800 1000
Time T T T T T
add $s0, $t0, $t1 | IF —= 1D B MEM EB§

* |In this example

e Reads are done from program memory and the register file

* Write is done on the register file
 The data memory is not used
* The ALU executes

EE 4980 — MES 13

© tj

* Pipeline Operation

 What about this operation should concern us?

. 200 400 600 800 1000
Time T T T T T

add $s0, $t0, $t1 | IF [—F 1D B MEM EB

* The ID (register read) and the WB access the same
resource

* This creates a potential for conflicts

EE 4980 — MES 14 © tj

* Pipeline Hazards

* Hazards are conditions where the next instruction cannot
perform its assigned pipeline action in the next clock cycle

* 3 types
e Structural
* Data
e Control

EE 4980 — MES 15

© tj

e Structural Hazards

e These hazards result from a resource conflict

* Classic case is Harvard vs. vonNeuman memory
architectures

* vonNeuman architectures share a single memory for program and
data

* Alw or sw command requires access to data memory to load or
store the data value

It would not be possible to fetch the appropriate instruction during
this clock cycle since the memory would be in use

* The IF would be stalled and a “bubble” would be created in the
pipeline

EE 4980 — MES 16

© tj

e Structural Hazards

* vonNeuman memory architecture

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF w2 3 [istall | 4 5 6 7
ID W, 2 3 4 5 6
EX LW 2 bubble 4 5

MEM 2 3 bubble 4

3 bubble

data memory access prevents a concurrent instruction fetch

EE 4980 — MES

17

9

U OO N

10

O N 00 L

11
10
9
8
7

12
11
10
9
8

13
12
11
10

9

14
13
12
11
10

© tj

e Structural Hazards

* MIPS implementation is designed to avoid structural
hazards

EE 4980 — MES 18 © tj

e Data Hazards

* These hazards result from a dependence of one
instruction on another instruction still in the pipeline

* Consider the following code snippit

add SsO, StO, St1
sub St2, SsO, St3

* The value of $s0 is needed to perform the subtraction

EE 4980 — MES 19 © tj

e Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add sub sub sub 3 4 5 6 7 8 9 10 11 12
ID add stall stall sub 3 4 5 6 7 8 9 10 11
EX add bubble bubble sub 3 4 5 6 7 8 9 10
MEM add bubble bubble sub 3 4 5 6 7 8 9
WB | add | bubble bubble sub 3 4 5 6 7 8

* 2 clock cycle bubbles are created

* It would be 3 bubbles — except we can take advantage of our
convention

e writes occur in the first half of the clock cycle
e reads occur in the second half of the clock cycle
* the WB occurs during the same clock cycle as the register read

EE 4980 — MES 20

13
12
11
10
9

© tj

e Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

! 200 400 600 800 1000 1200 1400 1600
Time | T T T T T T I

add $s0, $t0,8t1 | IF —=5 1D EEX MEM ﬂw}
bubble bubble) bubble bubble) bubble
@ @ @) @ O
bubble bubble) (" bubble bubble) (" bubble
@) O @ Q. O
IF

o @ EEX MEM WB |

* 2 clock cycle bubbles are created

* It would be 3 bubbles — except we can take advantage of our
convention

* writes occur in the first half of the clock cycle
e reads occur in the second half of the clock cycle
* the WB occurs during the same clock cycle as the register read

sub $t2, $s0, $t3

EE 4980 — MES 21

© tj

e Data Hazards

* In many cases the compiler can avoid a data hazard

add Ss0, StO, St1
sub St2, Ss0, St3
or Ss2,StO, St1
and Ss3, StO, St3
add Ss4, St1, St3

re-order the instruction to remove
the hazard condition

add Ss0, StO, St1
or Ss2, StO, St1
and Ss3, St0, St3
add Ss4, St1, St3
sub St2, SsO, St3

EE 4980 — MES 22 © tj

e Data Hazards

e Hardware can also be used to avoid data hazards
 called forwarding or bypassing

e provide the needed data as soon as it is valid
* requires extra circuitry

Program
execution

400

600

800

order Time
(in instructions)

add $s0, $t0, $t1

sub $t2, $s0, $t3

EE 4980 — MES

23

MEM

SEX

MEM

© tj

e Data Hazards

* Hardware cannot avoid all data hazards
e cannot go backwards in time !

EE 4980 — MES

200 400

600 800

1000

Time

Iw S$s0, 20(St1)

F —= 1D :B—MEM ws |

sub $t2, $s0, $t3 ' S VAR
Program

execution _ 200 400 600 800 1000 1200 1400
order Time . T T T T .

(in instructions)
lw $s0, 20($t1)

sub $t2, $s0, $t3

MEM|—e— WB |

IF

24

@ O

MEM

© tj

e Data Hazards

* Forwarding plus compiler optimizations can avoid
additional data hazards

Tw
Tw
— add
SW
Tw

stall

stall |— add
SW

EE 4980 — MES

Tw
add

$tl, 0($t0) Tw $tl, 0($t0)

($t2)4($t0) 1w

$t3, 12($t0) add
8($t0) Sw

$t5, 16($t0) Sw $t5, 16($t0)

25 © tj

e Control Hazards

* These hazards result from making a decision while other
instructions continue to progress through the pipeline

* Branch instructions are the most common example
* don’t know whether to load the next instruction or not

* three approaches

* stall
* predict
e delay

EE 4980 — MES 26

© tj

 Control Hazards - stall

* Do not load the next instruction into the pipeline

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF
ID
EX
MEM
WB

EE 4980 — MES

add beq 3 3 8

add stall stall

add beq bubble bubble

9
8

10 11
9 10
8 9

add beq bubble bubble 8

add

beq

bubble bubble

12
11
10
9
8

13
12
11
10
9

* during decode — know you have a branch
* during execute — know if taking branch or not

 PC will be updated

* Next cycle — fetch the next instruction based on PC value

27

14
13
12
11
10

15
14
13
12
11

16
15
14
13
12

17
16
15
14
13

18
17
16
15
14

© tj

e Control Hazards - stall

EE 4980 — MES

Even if you add circuitry to detect the branch and update
the PC all during the decode — can’t avoid a stall

Program
execution Time 200 400 600 800 1000 1200 1400 4
order I I I I I I I &
(in instructions)

add $4,85,86 || [Res| AW | oGl [Res

Instruction Data
Yopi$1, 4240 m fetch Reg| ALU | ccess |9
bubble/(bubble/(bubble/ bubble/(bubble
9
or $7, $8, $9 <———»Instruction Data
\ 400 ps fetch ged) | gal access | 9
28 © tj

* Control Hazards - predict

* Many algorithms

e Simplest —assume branch will not be taken
* no penalty if correct
 stall only when wrong

EE 4980 — MES 29 © tj

e Control Hazards — predict
* Predict branch not taken

Branch Not Taken
Prediction correct!

Branch Taken
Prediction wrong!

EE 4980 — MES

Program

execution 200 400 600 800 1000 1200 1400

Time

order
(in instructions)

Instruction Data
add $4, $5, $6 fetch Rac(ip A access | 1e9
Instruction Data
S 2,40 200 ps fetch Reg | gk access | 19
~———Instruction Data
Iw $3, 300($0) 200 ps| fetch Rea (§ fU access |9

Program
execution Time 200 400 600 800 1000 1200 1400
order T 1 T T T 1 1
(in instructions)
Instructi Dat
add $4’ $5’ $6 nsf;l:(?hlon Reg AS) acfezs Reg
Instruction Data
beq $1’ $2' 40 m fetch Hog QAR access e
bubble/Cbubble/Cbubble/ bubble/(bubble
o,
or $7, $8, $9 <«———————»Instruction Data
400 ps fetch O LV access | N°9
30

© tj

e Control Hazards - predict

 Static Branch Prediction
e Predict backward branches - taken
* Predict forward branches — not taken
* Looping code
e executes the loop 100 times
* jumps out of the loop 1 time

* Dynamic Branch Prediction
e Keep track of recent branch behavior (for each branch)
* Assume recent behavior will continue
 When wrong — clear history and start over
 Hardware intensive

EE 4980 — MES 31

© tj

e Control Hazards - delay

* Delayed Decision

* Pipeline always executes the instruction immediately after the
branch

* The branch then executes (only 1 cycle delay allowed)

* Requires the next instruction to be independent of the branch
decision

e Compiler is designed to set this up

EE 4980 — MES 32

© tj

e Control Hazards - delay

- DeIayed Decision (assume HW to limit bubble to 1 cycle)

add St0,St1,5t2
beg S$t1,5t2,-30

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
IF add beq 3 8 9 10 || 11 Dhchalec13 4 JOVAN | BBl . 15 10l 1708 enis 1l *19
ID add stall 8 EPRIRTI | AT L K B ARG hhN . TR
EX add beq bubble 8 9 doman11 |7 1277 1h3 4 1] s ie)| 17
MEM add beq bubble 8 9 10 11 12 13 14 15 16
wB add beq bubble 8 9 1001900 Wa (st [Pl | 15
re-order
Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
IF beq add 8 9 ho 4™ 11 [T 12) 8B 7) asRde | |17 [T 1s” | 1O | 20
ID add 8 o || v V2 VB aNEE. L [A e
EX beq add 8 9 10 Bogtinabandins [TR LY 03 3015, || | 16hdmaz bl 18
MEM beq add 8 9 gohtiia) |, 2 .| 3 1] ||| 150 gom—1
w8 beq add 8 9 ot RNV R D s
EE 4980 — MES 33

© tj

* Mapping the datapath to a pipeline

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

< createsia control hazard

32
\\ @ \\

< creates a: data hazard
|

I I	I	
Add T T		
% [[} I		
OM : ofe B Read : I\ : :
u PC @] Address | register data 1 | Zero H————» |
X | Read | ALU |
U | register 2 | & Address |
Instruction [~ Registers I result Rdead‘
- ata
: Write Read : Data :
Instruction register data 2 | Memory |
e 1| | Write I | |
: data : Write :
| | data |
| | |
| | 1
: © Sign- : :
| | |
| | |
| | |
| | |
| | 1
| |
| |
| |
| |

EE 4980 — MES 34 © tj

* Mapping the datapath to a pipeline

* Registers are required to hold intermediate values
between stages

Active registers will be highlighted
left side — write
right side - read

97 bits

EX/MEM

EE 4980 — MES

MEM/WB

64 bits

| Address

Write

64 bits 128 bits
—
Add
4
|
5
PC | Address = Read
. Read
2 register 1
T - % data 1
i~ Read
Instruction | register 2
memory 't o ~ Registers pa,q
5 | Write data 2
" | register
Write
B data
16 i
3 Sign- 32
v\ extend

data

memory

Read
data

* Mapping the datapath to a pipeline
* lw instruction - IF

Iw

! Instruction fetch

Address

Instruction
memory

IF/ID

PC increments

feeds back

stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg

EE 4980 — MES

g Add
result

EX/MEM

Shift
left 2
[
;g Read Read
=] ~ | register 1 ea >
’@‘ ¢ data 1
oy » | Read
" | register 2
—$ Registers Read
»| Write data 2
register
> Write
data
16 g
¥ Sign- 32
T | extend

Read
Address data

Data

memory

Write
data

MEM/WB

A |

36

© tj

* Mapping the datapath to a pipeline

e |winstruction— 1D (instruction decode and register read)

Iw

Instruction decode

IF/1D

Address

Instruction
memory

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

EE 4980 — MES

Instruction

d

ID/EX EX/MEM MEM/WB
iy >
Shift
left 2
Read
register 1 Read
data 1
Read -
register 2
i Read
Registers po.q > Address di?a 1
Write data 2
register Data
> Write memory
data
Write
data
16 -
5 [sign- | 32 >
v extend

© tj

* Mapping the datapath to a pipeline
* |lw instruction — EX

Iw

Execution

EE 4980 — MES

IF/ID ID/EX EX/MEM MEM/MWB
Add > > \
g 2l AddAdd ~
Shift result
left 2
0
M
u PC Address c Read
x 2[7 | register 1 IR >
1 g data 1
E= Read —-——
Instruction = register 2 Read
Registers > 0
Mooy, B 5| Write . Read > sl data [M
register data 2 Data u
—»-| Write memory i
data
Write
> data
Add read data 1 to sign extended immediate 16 . 30 L.
h . g s, | Sign- L&
from the instruction and store in EX/MEM " extend
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM
38

© tj

* Mapping the datapath to a pipeline
* lw instruction — MEM

Address

Instruction
memory

\ i

Data memory is read and stored in MEM/WB
ALU result is stored in MEM/WB

EE 4980 — MES

IF/ID

| ¥ |
| Memory l
ID/EX EX/MEM MEM/WB
i .
Shift
left 2

[4
-% Read T
= " | register 1 eal
® g data 1
= Read >

register 2

f Read
Registers Rgaq @ Address data [

Write data 2

register Data

Write memory

data

E Wirite
3 data
16 i 32 >
] Sign- -

v extend

39

© tj

* Mapping the datapath to a pipeline

e |w instruction — WB

IF/ID ID/EX
4 |
=
Address _% Read
3 register 1 Read -
7] data 1
= Read
Instruction reglslerER -
memory . egisters pgaq -
Write Y

MEM/WSB register is read and fed back to
the register file

This fails! Why?

EE 4980 — MES

register
Write
data.

data 2

Sign-
extend

EX/MEM
e .
- <@~ Address
Data
memory
4 o | Write
" | data

Read
data

lw
Write back

MEM/WB

40

© tj

* Mapping the datapath to a pipeline
* |lw instruction — WB

register address for 3 instructions after Iw
/

lw
Write back

Address

Instruction
memory

MEM/WSB register is read and fed back to
the register file

This fails! Why?

EE 4980 — MES

IF/ID ID/EX EX/MEM MEM/WB
§
= Read
2 register Read >
% data 1
= Read > -
registef 2
R
-3 Registers Roqq > > @ Address d:?; =1
W"_ data 2
regis Dats
nite memory
data
4 o | Write
" | data
16 3
X . | Sign- 32 >
X extend
41 © tj

* Mapping the datapath to a pipeline
* |lw instruction — WB

add write register value to ID/EX, EX/MEM, MEM/WB

(AN

IF/ID

0

M
u PC Address
x

1

MEM/WSB register is read and fed back to
the register file

EE 4980 — MES

| Instruction
== = 5 =
E‘— . 3 = 3 @ * @©
SF o7 af oo
o (5] o
o o 4]
1]

MEM/WB

42

© tj

* Mapping the datapath to a pipeline
* sw instruction - IF

I sW I

! Instruction fetch

EE 4980 — MES

IF/ID ID/EX EX/MEM MEM/WB
4 d Add
Shift result
left 2
—
[
Address 2 Read
3 " | register 1 Read >
@ data 1
<&, |Read T
Instruction ~ |register2 Read
> e Registers poqq > e
memaory = [wiite d:lgz > Address data
register Data
> Write memory
data
- Write
7 data
PC increments 16 sign- | 2 L
feeds back v extend
stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg
43

© tj

* Mapping the datapath to a pipeline

 sw instruction—1D (instruction decode and register read)

SW
Instruction decode

Address

Instruction
memory

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

EE 4980 — MES

IF/ID ID/EX EX/MEM MEM/WB
iy >
Shift
left 2
5
= Read Read
2 register 1 eal
I e data 1 g
~ Read -
register2 Read
> L & ~ Registers paay - > Address ahe [T
o | Write data 2 4
register Data
> Write memory
data
5 | Write
data
16 -
1 . [Sign- 32 >
v extend

© tj

* Mapping the datapath to a pipeline
* sw instruction — EX

sSwW

Execution

EE 4980 — MES

IF/ID ID/EX EX/MEM MEM/WB
Add > \‘
4 AdgAdd -
Shift result
left 2
0
M
u PC | Address c Read Read
X 2 register 1 5 > >
| 4 2 data 1
= Read Zero —
Instruction < register 2 ALU ALy Read 0
—4 i |
memory | write ReglslersRea d > - result Address Ei M
register data 2 Data .
. X
Write Jwu memory]
data
Write
B data
Add read data 1 to sign extended immediate 16 [sign- | 32 x
. . . L - B
from the instruction and store in EX/MEM ¥ | extend
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM
45

* Mapping the datapath to a pipeline
* sw instruction — MEM

EE 4980 — MES

| sSw
| Memory
IF/ID ID/EX EX/MEM MEM/WB
Shift resu
left 2
S
Address 2 Read
3 register 1 Read
k7 data 1
= Read > e
Instruction register2 Read
- Registers p..q i - ead | | 2
memory Wiite e > Address data 4
register Data u
Write memory X
data 1
1 4 Write
3 data
Data memory is written from EX/MEM 16 Sign- | 32 >
\ —
ALU result is stored in MEM/WB Rag\fexienc
Data memory read data is stored in MEM/WB
46

© tj

* Mapping the datapath to a pipeline

e sw instruction — WB

Address

Instruction
memory

MEM/WB register is read and fed back to
the register file

EE 4980 — MES

IF/ID

ID/EX EX/MEM MEM/WB
<
% Read Read
2 register 1 L&
g g data 1
= Read -
register2 B
Registers Raaq -@—>| Address data il
o | Write data 2
" | register Data
> Write memory
data
Write
data
16 i 32
\ . | Sign- >
| extend

* Pipeline Control

 Many more control signals than we show

 |F —all control lines operate the same way for all
instructions
e PCisread
* Program Memory is read
 PCis updated

* |ID - all control lines operate the same way for all
instructions

* Instruction is decoded
e Registers are read

EE 4980 — MES 48

© tj

* Pipeline Control

* EX — executes or calculates an address
* RegDst — choose between 2" or 3 register field for WB
* ALUOp —L/S, Branch, or R-type
* ALUSrc — selects Read Data 2 or sign extended immediate

* These are generated in the ID stage but used in the EX stage
* Must pass them forward through the ID/EX register

* MEM = R/W to memory and selects the offset branch value

* MemRead , MemWrite — memory read / write

* Branch — combined with “zero” selects the offset branch to feed back
to the PC

* These are generated in the ID stage but used in the MEM stage
* Must pass them forward through the ID/EX register and the EX/MEM register

EE 4980 — MES 49

© tj

* Pipeline Control

 WB — chooses what to write back
* RegWrite — enables a write to the register file

 MemtoReg — choose between ALU output or memory output to
feed back to the register file

* These are generated in the ID stage but used in the MEM stage

* Must pass them forward through the ID/EX, EX/MEM and MEM/WB
registers e

Instruction
e

wB

[TT1

IF/ID ID/EX EX/MEM MEM/WB

EE 4980 — MES 50

© tj

PCSrc

* Pipeline Control

Instruction
memory

LEX:MEM

WB

M

L

EE 4980 — MES

ID/EX
wB
Control M ‘
EX
2
=
o
@
(o
5 Read
o
] register 1 Read
] d data 1
B Read
£ register 2
— Reqi
Write dgfaag
register
Write
data
Instruction
[15-0] 16 [sign. |3 J
extend
Instruction
[20-16]
Instruction
[15-11]

Branch
2
=
E
@
=
Read
Address data
Data
memory
Write
data

51

MemtoReg

=

ez °

e Superscalar
e Parallelism at the micro-architecture level

Wiriteback

Fetch Decode Issue

Flosteg-Pomt { NEON
i i Dual lssue

Queue

ARM Cortex-A7 Pipeline

Queve Issue Whiteback

Decode, Rename &
Fetch Dispatch

(T - e

Lo

Loop Cache

ARM Cortex-A15 Pipeline

EE 4980 — MES 52 © tj

* Processor Architecture

5 Stages 7 Stages 15tage 1 Stage 1

le «
cm'wr 0 5o
le e

I |

Dispatch

128 bits
LY
=
W
& er AL
hifter
cludas
SIMD)
(60 Enlrln;i Retiremant Buffer i g

Instruction Fetch
Register Rename

|

15518 [B-antry Quews per lssue port)

B8l uction fssue

swsces] 11

g
5 M
il &
i ar

{BTE) (256-anury)
mh 3-way Instruction Decode

£l |

H i ki

] E
Load
1 Stora I
ar cycld

Global History Buffer | || L1 Instruction Cache

Branch Prediction

Branch Target Buifer

Load-Store
[_Store Bufier_]
L1 Data Cache

L2 Cache Control
Bus Interface Unit (BIU)

I

E
&
i
a
E
Q
2
0
[y]
<
3
£
j=]
5}
=
%
<

EE 4980 — MES 53

Copyright () 2011 Hiroshige Goto All rights resarved.

© tj

* Processor Architecture

EE 4980 — MES

128 Entry

Inst. TLB
(4-way)

Instruction

Fetch
Hardware

32KB Inst. Cache (4-way associative)

5,

18 Entry Instruction Queue

7 s

Retirement [§
Register File N

Register Alias Table and Allocator

| Macro-Op Handling |

Macro-Op Decode
and Loop Stream
Detect

Execution Engine
including Out of
Order Hardware

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

Load Store
Address Address

Memory Order Buffer

128-bit

FMUL
FDIV

64 Entry Data TLB
(4-way associative)

32KB Dual Ported Data
Cache (8-way associative)

Ny

54

‘pandasal siyb L |1y 0109 aBjusonH Loz (2) wbpddon

®— 1 seymayaid-omy
m 2Be1g yorgayIM J2PIO-jO-IND (@Mre-91 10 avzel | nAm
2yae) ejeqg L1
bl ol F aun
T 5 z BuIpIRAUT} Y 10IS-FEND
g 3 s mrew]
£ 3N 21015-PECT
¢ 202l 121 21 Wz s
& < = < w 1
5 = : waisAg Alowsjy
a2 = W
2 3 :
.
] !
1 dBnss| uofforuisul ¢ m
B .._. U BNSSHINYY JEPIO-IT-ING m

__u!_-.nu_.i 7
BNany IS

1 Stage

abeig ynedsiq 1+¢
L q ﬂ 5 .
= |28

& 5|3l
a _ et | o |zfg | .
- abeig aweusy JaysiBay _ 1ouuoH yauelg ..m M M
m.l wca_a_smc_m_—. .—. b | .m g 2
a abe)s apooag H
4 uopangsul-leng = [—

L @ m =
8 | E
» [eenpuomonssm | [snenpuopopesd |
: | %—, i ii
g
@A
Ll

(EH¥2-9) 10 GNZE)
ayae) uopangsuyj |

weibeig ¥20i8 8100 EV-X3H0D WHY

* Modern Example

© tj

55

EE 4980 — MES

