
Processor Architecture
Pipeline

Last modified 5/4/20

2 © tjEE 4980 – MES

Pipelining

• Simple Datapath

3 © tjEE 4980 – MES

Pipelining

• 5 Stages of Instruction Execution

• Fetch (IF)

• Decode / Register Access (ID)

• Execute (EX)

• Memory Access (MEM)

• Write Back (WB)

Pipeline these at 1 stage each

4 © tjEE 4980 – MES

Pipelining

• Pipelining

0 1 2 3 4 5

D

C D

B C D

A B C D

CPU Execute A B C D

A B C D

A B C

A B

A

4us 4us 4us 4us 4us

Execute = fetch instruction, decode, execute, write back

Clock Cycle

Waiting

Instructions

Retired

Instructions

No Pipeline

5 © tjEE 4980 – MES

Pipelining

• Pipelining
• Break complex tasks into smaller chunks

• Start the next instruction as soon as each subtask is
complete

0 1 2 3 4 5 6 7 8

D

C D

B C D

A B C D

Fetch A B C D

Decode A B C D

Execute A B C D

Write back A B C D

A B C D

A B C

A B

A

1us 1us 1us 1us 1us 1us 1us 1us

Waiting

Instructions

Retired

Instructions

Clock Cycle

Pipeline

6 © tjEE 4980 – MES

Pipelining

• Pipeline Performance

• Pipelining does not reduce the time to execute an
instruction
• In fact – it usually increases the instruction execution time

• Pipelining does increase the instruction throughput
Time

IF/ID/EX/MEM/WB 1 2 3

1000 1000 1000

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

EX 1 2 3 4 5 6 7 8 9 10 11 12 13

MEM 1 2 3 4 5 6 7 8 9 10 11 12

WB 1 2 3 4 5 6 7 8 9 10 11

7 © tjEE 4980 – MES

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions → 1x109 units of time

• Pipelined (5 stage)
• 1M Instructions → 2x108 + 5*200 ≈ 2x108 units of time

• Overall throughput improvement of 5x

8 © tjEE 4980 – MES

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions → 1x109 units of time

• Pipelined (5 stage w/20% penalty per stage)
• 1M Instructions → 2.4x108 + 5*2240 ≈ 2.4x108 units of time

• Overall throughput improvement of 4.2x

9 © tjEE 4980 – MES

Pipelining

• Pipeline Performance

• Pipeline stages typically do not all take the same amount
of time

• Non-pipelined instruction throughput = 1 inst / 800ps

• Pipelined (5 stage) instruction throughput = 1 inst / 200ps

• Overall throughput improvement of 4x

Stage IF ID/RR EX MEM WB

Delay 200ps 100ps 200ps 200ps 100ps

10 © tjEE 4980 – MES

Pipelining

• Pipeline Performance

• Not all instruction need to use all the pipeline stages

Instruction IF ID/RR EX MEM WB

ADD X X X X

OR X X X X

LW X X X X X

SW X X X X

BEQ X X X

11 © tjEE 4980 – MES

Pipelining

• MIPS Pipeline Considerations

• All instructions are 32-bits
• Easier to fetch and decode in one cycle

• Few and regular instruction formats
• R, I, J
• Can decode and read registers in one step - why?

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands
• Memory access takes only one cycle

12 © tjEE 4980 – MES

Pipelining

• Pipeline Operation

• The program memory, register file and data memory can
each be read or written

• We will use the following convention
• Writes occur in the first half of the clock cycle

• Reads occur in the second half of the clock cycle

How would we implement this?

13 © tjEE 4980 – MES

Pipelining

• Pipeline Operation

• In this example
• Reads are done from program memory and the register file

• Write is done on the register file

• The data memory is not used

• The ALU executes

WB actually occurs in the
first half of the next clock
cycle

14 © tjEE 4980 – MES

Pipelining

• Pipeline Operation

• What about this operation should concern us?

• The ID (register read) and the WB access the same
resource
• This creates a potential for conflicts

15 © tjEE 4980 – MES

Pipelining

• Pipeline Hazards

• Hazards are conditions where the next instruction cannot
perform its assigned pipeline action in the next clock cycle

• 3 types
• Structural

• Data

• Control

16 © tjEE 4980 – MES

Pipelining

• Structural Hazards

• These hazards result from a resource conflict

• Classic case is Harvard vs. vonNeuman memory
architectures
• vonNeuman architectures share a single memory for program and

data

• A lw or sw command requires access to data memory to load or
store the data value

• It would not be possible to fetch the appropriate instruction during
this clock cycle since the memory would be in use

• The IF would be stalled and a “bubble” would be created in the
pipeline

17 © tjEE 4980 – MES

Pipelining

• Structural Hazards

• vonNeuman memory architecture

data memory access prevents a concurrent instruction fetch

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF LW 2 3 Stall 4 5 6 7 8 9 10 11 12 13 14

ID LW 2 3 bubble 4 5 6 7 8 9 10 11 12 13

EX LW 2 3 bubble 4 5 6 7 8 9 10 11 12

MEM LW 2 3 bubble 4 5 6 7 8 9 10 11

WB LW 2 3 bubble 4 5 6 7 8 9 10

18 © tjEE 4980 – MES

Pipelining

• Structural Hazards

• MIPS implementation is designed to avoid structural
hazards

19 © tjEE 4980 – MES

Pipelining

• Data Hazards

• These hazards result from a dependence of one
instruction on another instruction still in the pipeline

• Consider the following code snippit

add $s0, $t0, $t1

sub $t2, $s0, $t3

• The value of $s0 is needed to perform the subtraction

20 © tjEE 4980 – MES

Pipelining

• Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

• 2 clock cycle bubbles are created
• It would be 3 bubbles – except we can take advantage of our

convention
• writes occur in the first half of the clock cycle
• reads occur in the second half of the clock cycle
• the WB occurs during the same clock cycle as the register read

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add sub sub sub 3 4 5 6 7 8 9 10 11 12 13

ID add stall stall sub 3 4 5 6 7 8 9 10 11 12

EX add bubble bubble sub 3 4 5 6 7 8 9 10 11

MEM add bubble bubble sub 3 4 5 6 7 8 9 10

WB add bubble bubble sub 3 4 5 6 7 8 9

21 © tjEE 4980 – MES

Pipelining
• Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

• 2 clock cycle bubbles are created
• It would be 3 bubbles – except we can take advantage of our

convention
• writes occur in the first half of the clock cycle
• reads occur in the second half of the clock cycle
• the WB occurs during the same clock cycle as the register read

22 © tjEE 4980 – MES

Pipelining
• Data Hazards

• In many cases the compiler can avoid a data hazard

add $s0, $t0, $t1
sub $t2, $s0, $t3
or $s2, $t0, $t1
and $s3, $t0, $t3
add $s4, $t1, $t3

add $s0, $t0, $t1
or $s2, $t0, $t1
and $s3, $t0, $t3
add $s4, $t1, $t3
sub $t2, $s0, $t3

re-order the instruction to remove
the hazard condition

23 © tjEE 4980 – MES

Pipelining

• Data Hazards

• Hardware can also be used to avoid data hazards
• called forwarding or bypassing

• provide the needed data as soon as it is valid

• requires extra circuitry

24 © tjEE 4980 – MES

Pipelining

• Data Hazards

• Hardware cannot avoid all data hazards
• cannot go backwards in time !

lw $s0, 20($t1)

sub $t2, $s0, $t3

25 © tjEE 4980 – MES

Pipelining

• Data Hazards

• Forwarding plus compiler optimizations can avoid
additional data hazards

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

26 © tjEE 4980 – MES

Pipelining

• Control Hazards

• These hazards result from making a decision while other
instructions continue to progress through the pipeline

• Branch instructions are the most common example
• don’t know whether to load the next instruction or not

• three approaches
• stall

• predict

• delay

27 © tjEE 4980 – MES

Pipelining

• Control Hazards - stall

• Do not load the next instruction into the pipeline

• during decode – know you have a branch
• during execute – know if taking branch or not
• PC will be updated

• Next cycle – fetch the next instruction based on PC value

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 3 8 9 10 11 12 13 14 15 16 17 18

ID add beq stall stall 8 9 10 11 12 13 14 15 16 17

EX add beq bubble bubble 8 9 10 11 12 13 14 15 16

MEM add beq bubble bubble 8 9 10 11 12 13 14 15

WB add beq bubble bubble 8 9 10 11 12 13 14

28 © tjEE 4980 – MES

Pipelining

• Control Hazards - stall

• Even if you add circuitry to detect the branch and update
the PC all during the decode – can’t avoid a stall

29 © tjEE 4980 – MES

Pipelining

• Control Hazards - predict

• Many algorithms

• Simplest – assume branch will not be taken
• no penalty if correct

• stall only when wrong

30 © tjEE 4980 – MES

Pipelining

• Control Hazards – predict
• Predict branch not taken

Branch Not Taken

Prediction correct!

Branch Taken

Prediction wrong!

31 © tjEE 4980 – MES

Pipelining

• Control Hazards - predict

• Static Branch Prediction
• Predict backward branches - taken
• Predict forward branches – not taken
• Looping code
• executes the loop 100 times
• jumps out of the loop 1 time

• Dynamic Branch Prediction
• Keep track of recent branch behavior (for each branch)
• Assume recent behavior will continue
• When wrong – clear history and start over
• Hardware intensive

32 © tjEE 4980 – MES

Pipelining

• Control Hazards - delay

• Delayed Decision
• Pipeline always executes the instruction immediately after the

branch

• The branch then executes (only 1 cycle delay allowed)

• Requires the next instruction to be independent of the branch
decision

• Compiler is designed to set this up

33 © tjEE 4980 – MES

Pipelining

• Control Hazards - delay

• Delayed Decision (assume HW to limit bubble to 1 cycle)

add $t0,$t1,$t2

beq $t1,$t2,-30

…

re-order

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 8 9 10 11 12 13 14 15 16 17 18 19

ID add beq stall 8 9 10 11 12 13 14 15 16 17 18

EX add beq bubble 8 9 10 11 12 13 14 15 16 17

MEM add beq bubble 8 9 10 11 12 13 14 15 16

WB add beq bubble 8 9 10 11 12 13 14 15

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF beq add 8 9 10 11 12 13 14 15 16 17 18 19 20

ID beq add 8 9 10 11 12 13 14 15 16 17 18 19

EX beq add 8 9 10 11 12 13 14 15 16 17 18

MEM beq add 8 9 10 11 12 13 14 15 16 17

WB beq add 8 9 10 11 12 13 14 15 16

34 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline

 creates a control hazard

 creates a data hazard

35 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• Registers are required to hold intermediate values

between stages

64 bits 128 bits 97 bits 64 bits

Active registers will be highlighted
left side – write
right side - read

36 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction - IF

PC increments
feeds back
stored in IF/ID reg incase needed

Instruction is latched in IF/ID reg

37 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – ID (instruction decode and register read)

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

38 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – EX

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

39 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Data memory is read and stored in MEM/WB
ALU result is stored in MEM/WB

40 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
the register file

This fails! Why?

41 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
the register file

This fails! Why?

register address for 3 instructions after lw

42 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
the register file

add write register value to ID/EX, EX/MEM, MEM/WB

43 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• sw instruction - IF

PC increments
feeds back
stored in IF/ID reg incase needed

Instruction is latched in IF/ID reg

sw

44 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – ID (instruction decode and register read)

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

sw

45 © tjEE 4980 – MES

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – EX

46 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – MEM

Data memory is written from EX/MEM
ALU result is stored in MEM/WB
Data memory read data is stored in MEM/WB

47 © tjEE 4980 – MES

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – WB

MEM/WB register is read and fed back to
the register file

48 © tjEE 4980 – MES

Pipelining
• Pipeline Control

• Many more control signals than we show

• IF – all control lines operate the same way for all
instructions
• PC is read
• Program Memory is read
• PC is updated

• ID - all control lines operate the same way for all
instructions
• Instruction is decoded
• Registers are read

49 © tjEE 4980 – MES

Pipelining
• Pipeline Control

• EX – executes or calculates an address
• RegDst – choose between 2nd or 3rd register field for WB
• ALUOp – L/S, Branch, or R-type
• ALUSrc – selects Read Data 2 or sign extended immediate

• These are generated in the ID stage but used in the EX stage
• Must pass them forward through the ID/EX register

• MEM – R/W to memory and selects the offset branch value
• MemRead , MemWrite – memory read / write
• Branch – combined with “zero” selects the offset branch to feed back

to the PC

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX register and the EX/MEM register

50 © tjEE 4980 – MES

Pipelining

• Pipeline Control

• WB – chooses what to write back
• RegWrite – enables a write to the register file

• MemtoReg – choose between ALU output or memory output to
feed back to the register file

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX, EX/MEM and MEM/WB

registers

51 © tjEE 4980 – MES

Pipelining

• Pipeline Control

52 © tjEE 4980 – MES

Pipelining

• Superscalar
• Parallelism at the micro-architecture level

53 © tjEE 4980 – MES

Pipelining

• Processor Architecture

54 © tjEE 4980 – MES

Pipelining

• Processor Architecture

55 © tjEE 4980 – MES

Pipelining

• Modern Example

