Last updated 3/7/19

- Deposition
 - Depositing a material onto a substrate
 - Thick oxide layers (where growth by oxidation is not reasonable)
 - Polysilicon (Gate material)
 - Special materials (Si₃N₄, SiC)
 - Chemical Vapor Deposition
 - Chemical processes are used to deposit material
 - Physical Vapor Deposition
 - Mechanical processes are used to deposit material

- Chemical Vapor Deposition
 - Gases are decomposed into constituent elements
 - The desired constituents then "settle" onto the surface of the wafer
 - Conformity how the desired material covers vertical vs horizontal surfaces
 - K = RateV / RateH

- Chemical Vapor Deposition
 - Atmospheric Pressure CVD (APCVD)
 - Results in low density material
 - Used for Oxide deposition
 SiH₄ + O₂ <-> SiO₂ + 2H₂

- Chemical Vapor Deposition
 - Low Pressure CVD (LPCVD)
 - Results in high density material
 - Conformality is high due to the low pressure allows for more random particle movement
 - Used for thin films

 $4 \text{ NH}_3 + 3 \text{ SiH}_2\text{Cl}_2 \iff \text{Si}_3\text{N}_4 + 6 \text{ HCl} + 6 \text{ H}_2$

- Chemical Vapor Deposition
 - Plasma Enhanced CVD (PECVD)
 - Low temperature version of CVD
 - Gasses are decomposed (a plasma)by using a high frequency voltage
 - Used to put films on top of metal layers
 - metal cannot take the heat from other methods

src: samcointl.com

- Physical Vapor Deposition
 - Sputtering
 - A sample of the desired material is bombarded with ions
 - The released particles then "settle" on to the wafer surface

Src: www.halbleiter.org