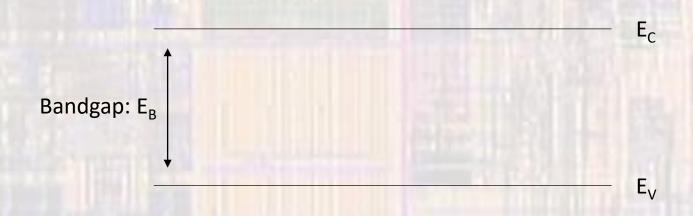
Last updated 2/9/19

Electrons and Holes

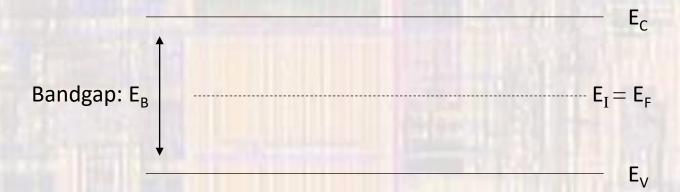
Charge

• Electron (n) -1.6x10⁻¹⁹ Coulomb


• Hole (p) +1.6x10⁻¹⁹ Coulomb

Effective mass

- Mass of a free electron
 - $m_0 = 9.109 \times 10^{-31}$ kilograms
- Effective mass of an electron in a silicon crystal
 - $m_n^* = 1.1 \times m_0$
- Effective mass of a hole in a silicon crystal
 - $m_p^* = 0.59 \times m_0$


- Electrons and Holes
 - Intrinsic carrier concentration room temp Si
 - $n_i \cong 10^{10} / cm^3$
 - Electron/Hole concentrations room temp Si
 - $n = p = n_i \cong 10^{10} / cm^3$
 - Charge neutral
 - Note the density of Si atoms in a crystal is 5x10²² /cm³
 - 2 carriers for every 5 trillion atoms

Band Diagrams

- Band Diagrams
 - Fermi Level
 - Indicates the energy level at which half of the possible states are filled with electrons
 - For our purposes the Fermi Level will be used to:
 - Indicate the type of a material
 - Calculate carrier concentrations
 - Analyze semiconductor devices

- Band Diagrams
 - Fermi Level Intrinsic
 - E_I ~ mid bandgap

- Band Diagrams
 - Fermi Level: n-type doping
 - E_F near E_C
 - Indicates an excess of electrons in the material

E_C E_F

 $\mathsf{E}_{\mathsf{I}} = \mathsf{E}_{\mathsf{F}}$

THE RESIDENCE OF THE PARTY OF T

 E_V

- Band Diagrams
 - Fermi Level: p-type doping
 - E_F near E_V
 - Indicates an excess of holes in the material

 $\mathsf{E}_{\mathsf{I}} = \mathsf{E}_{\mathsf{F}}$