## Gain Stages

Last updated 4/7/19

## Gain Stages

- Threshold Voltage
- Gate voltage $\mathrm{V}_{\mathrm{GS}}$ that first allows conduction from source to drain
- Function of Silicon processing



## Gain Stages

- Large Signal Analysis
- $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$ : over voltage



## Gain Stages

- Large Signal Analysis
- Linear (Triode) Region
- $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{TH}}$
- $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$


$$
I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T H}\right) V_{D S}-V_{D S}^{2} / 2\right]
$$

## Gain Stages

- Large Signal Analysis
- Linear (Triode) Region
- $V_{D S} \ll V_{G S}-V_{T H}$


$$
\begin{aligned}
& I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T H}\right) V_{D S}\right] \\
& R_{E Q}=\frac{V_{D S}}{I_{D}}=\frac{1}{\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)}
\end{aligned}
$$

## Gain Stages

- Large Signal Analysis
- Onset of Saturation
- $V_{D S}=V_{G S}-V_{T H}$


$$
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)^{2}
$$

## Gain Stages

- MOS Transconductance
- Transconductance

$$
\frac{\partial I}{\partial V}
$$

- MOS Transconductance
- In Saturation

$$
\begin{gathered}
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)^{2} \\
g_{m}=\frac{\partial_{I D}}{\partial V_{G S}}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)
\end{gathered}
$$

## Gain Stages

- MOS Transconductance

$$
g_{m}=\frac{\partial_{I D}}{\partial V_{G S}}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)
$$

- with substitutions
$50 \mathrm{uA} / \mathrm{V}^{2}(5 / 0.1)(300 \mathrm{mV})=750 \times 10^{-6} / \Omega$

$$
g_{m}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}}=\frac{2 I_{D}}{V_{G S}-V_{T H}}
$$

$(2 \times 112 u A) / 300 \mathrm{mV}=750 \times 10^{-6} / \Omega$

- Non-Ideal Effects
- Body Effect

- Assuming the body/s/d junctions remain reverse biased the device will continue to operate - but with different threshold voltage characteristics
- $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{TH} 0}+\Upsilon\left(\ldots \mathrm{V}_{\mathrm{BS}} \ldots\right)$


## Gain Stages

- Non-Ideal Effects
- Channel Length Modulation



## Gain Stages

- Non-Ideal Effects
- Subthreshold Conduction
- Current conduction with $\mathrm{V}_{G S}$ below $\mathrm{V}_{T H}$
- Called weak inversion

$$
I_{D}=I_{o} \exp \frac{V_{G S}}{\xi V_{T}}
$$

$$
\xi>1
$$

## Gain Stages

- Small Signal Model

$$
I_{D}=g_{m} V_{G S}
$$

$$
1 /(0.1 \mathrm{x} 112 \mathrm{uA})=89 \mathrm{~K} \Omega
$$

typically $\quad \frac{1}{g_{m}} \ll r_{o}$
$1.3 \mathrm{~K} \Omega \ll 89 \mathrm{~K} \Omega$

## Gain Stages

- Small Signal Model



## Gain Stages

- Small Signal Model



## Gain Stages

- Common Source - Resistive Load



## Gain Stages

- Common Source - Resistive Load

Saturation

Small signal model


$$
\begin{aligned}
& \mathrm{G} \\
& A_{v}=\frac{\partial \text { Vout }}{\partial \operatorname{Vin}} \\
& A_{v}=-g_{m} R_{D}
\end{aligned}
$$

$A v=-\left(750 \times 10^{-6} / \Omega\right) \times 10 K \Omega=-7.5$

## Gain Stages

- Common Source - Resistive Load

Saturation

Small signal model


$$
\begin{aligned}
A_{v} & =\frac{\partial V o u t}{\partial V i n} \\
A_{v} & =-g_{m} \frac{r_{o} R_{D}}{r_{o}+R_{D}}
\end{aligned}
$$

$$
A v=-\left(750 \times 10^{-6} / \Omega\right) \times(10 \mathrm{~K} \Omega| | 90 \mathrm{~K} \Omega)=-6.75
$$

## Gain Stages

- Common Source - Current Source Load
- Saturation


$$
\begin{aligned}
& A_{v}=-g_{m} \frac{r_{o} R_{D}}{r_{o}+R_{D}} \\
& R_{D} \rightarrow \infty \\
& A_{v}=-g_{m} r_{o}
\end{aligned}
$$

$A v=-\left(750 \times 10^{-6} / \Omega\right) \times 90 K \Omega=-67.5$

## Gain Stages

- Common Source - Diode Connected Load


$$
\begin{aligned}
& I_{D_{w 1}}=\frac{1}{2} \mu_{n} C_{o x} \frac{W_{n}}{L_{n}}\left(V_{i n}-V_{T H_{n}}\right)^{2}= \\
& I_{D_{w 2}}=-\frac{1}{2} \mu_{p} C_{o x} \frac{W_{p}}{L_{p}}\left(V_{o u}-V_{D D}-V_{T H_{p}}\right)^{2} \\
& A_{v}=-\sqrt{\frac{\mu_{n}(W / L)_{1}}{\mu_{p}(W / L)_{2}}}=\frac{\left|V_{G S_{2}}-V_{T H_{2}}\right|}{V_{G S_{1}}-V_{T H_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Vdd} & =1.2 \mathrm{~V}, \text { vout }=\mathrm{Vdd} / 2, \mathrm{vin}=0.5 \mathrm{~V} \\
\mathrm{Av} & =|-0.6+0.3| /(0.5-0.3)=-1.5
\end{aligned}
$$

- Common Source - Diode Connected Load



## Gain Stages

- Common Source - Current Source Load


$$
A v=-\left(750 \times 10^{-6} / \Omega\right) \times(90 K \Omega| | 90 K \Omega)=-33.7
$$

## Gain Stages

- Common Source - Active Load


$$
A_{v}=-\left(g_{m 1}+g_{m 2}\right)\left(r_{o 1} \| r_{o 2}\right)
$$

$$
A v=-\left(750 \times 10^{-6} / \Omega+375 \times 10^{-6} / \Omega\right) \times(90 K \Omega| | 90 K \Omega)=-50.6
$$

## Gain Stages

- Common Source - Source Degeneration


$$
A v=-\left(750 \times 10^{-6} / \Omega\right) \times 10 K \Omega /\left(1+\left(750 \times 10^{-6} / \Omega\right) \times 500 \Omega\right)=-5.4
$$

- Common Source - Source Degeneration
- Increase in effective transistor output resistance
- $R_{S}$ is seen through the transistor


$$
\begin{aligned}
& r_{\text {out }}=\left[1+g_{m} R_{S}\right] r_{o} \\
& \left.r_{\text {out }}=\left[1+750 \times 10^{-6} / \Omega \times 500 \Omega\right] \times 90 \mathrm{~K} \Omega\right)=124 \mathrm{~K} \Omega
\end{aligned}
$$

## Gain Stages

- Source Follower

$A v=\left(750 \times 10^{-6} / \Omega\right) \times(10 K \Omega) /\left(1+\left(750 \times 10^{-6} / \Omega\right) \times(10 K \Omega)\right)=0.88$


## Gain Stages

- Source Follower - active load



## Gain Stages

- Source Follower
- Relatively low output impedance


$$
\mathrm{ro}=1 /\left(750 \times 10^{-6} / \Omega\right)=1.33 \mathrm{~K} \Omega
$$

## Gain Stages

- Common Gate Stage



## Gain Stages

## - Common Gate Stage



$$
R_{i n}=\frac{1}{\frac{1}{r_{o}}+g_{m}+g_{m b}}
$$

$$
\mathrm{R}_{\text {in }}=1 /\left(750 \times 10^{-6} / \Omega+400 \times 10^{-6} / \Omega+1 / 90 \mathrm{~K} \Omega\right)=861 \Omega
$$

## Gain Stages

## - Cascode Stage



$$
A_{v}=-g_{m} R_{D}
$$

M2 passes the current through

$$
R_{\text {out }}=\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}\right] r_{o 1}+r_{o 2}
$$

looks like common source with $r_{02}$ degeneration

- Cascode Stage



$$
R_{\text {out }}=\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}\right] r_{o 1}+r_{o 2}
$$

looks like common source with $r_{02}$ degeneration

$$
R_{\text {out }}=\left[1+\left(750 \times 10^{-6} / \Omega+400 \times 10^{-6} / \Omega\right) 90 \mathrm{~K} \Omega\right] 90 \mathrm{~K} \Omega+90 \mathrm{~K} \Omega=9.5 \mathrm{M} \Omega
$$

## Gain Stages

## - Cascode Load



$$
R_{\text {out }}=\left[1+\left(g_{m 2}+g_{m b 2}\right) r_{o 2}\right] r_{o 1}+r_{o 2}
$$

looks like common source with $r_{02}$ degeneration

## Gain Stages

## - Cascode Amplifier



$$
A_{v}=-g_{m 1}\left[\left(g_{m 2} r_{o 2} r_{o 1}\right) \|\left(g_{m 3} r_{o 3} r_{o 4}\right)\right]
$$

$A_{v}=-750 \times 10^{-6} / \Omega\left[\left(750 \times 10^{-6} / \Omega \times 90 \mathrm{~K} \Omega \times 90 \mathrm{~K} \Omega\right) \|\left(400 \times 10^{-6} / \Omega \times 90 \mathrm{~K} \Omega \times 90 \mathrm{~K} \Omega\right)\right]$ $=1587$

## Gain Stages

## - Folded Cascode Amplifier



## Gain Stages

- Folded Cascode Amplifier



## Gain Stages

## - Simulating $g_{m}$

## circuit for calculating gm






plotting Id vs Vgs for 7 values of Vds


inc D:\GDrive\MSOE \Common\Spice\Models\MSOE_100nm.txt dc v2 0 1.2 . 05 v1 . $\mathbf{3}$. 9.1


## Gain Stages

- Simulating $g_{m}$



## Gain Stages



## Gain Stages

- Simulating $\mathrm{gm}_{\mathrm{m}}$


