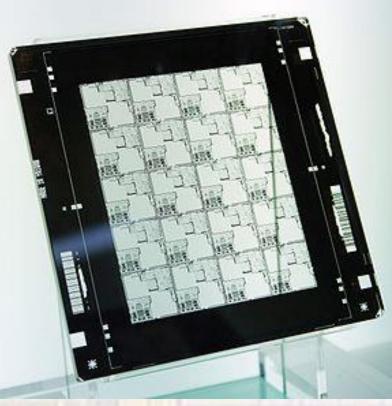
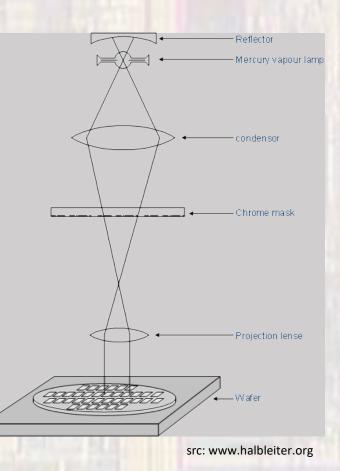
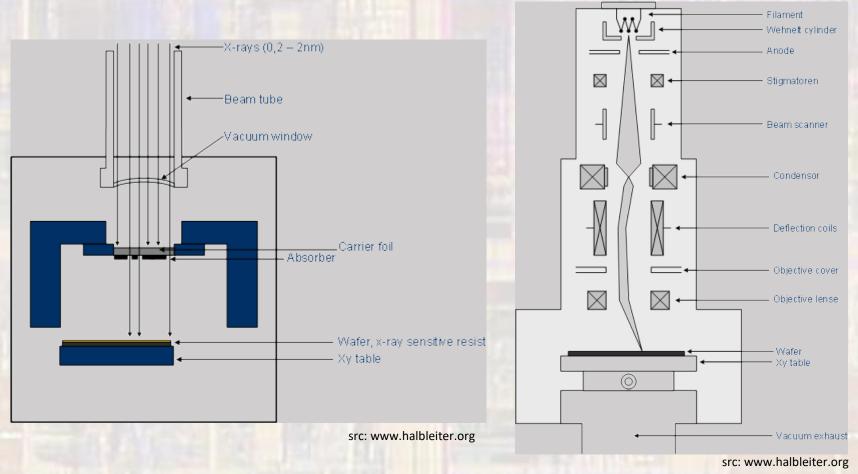

Last updated 3/5/19


- Photolithography
 - The process of creating an image (patterm) on a silicon wafer for further processing
 - 2 step process (many sub steps)
 - Photomask creation
 - Wafer patterning (lithography)

src: lithoguru

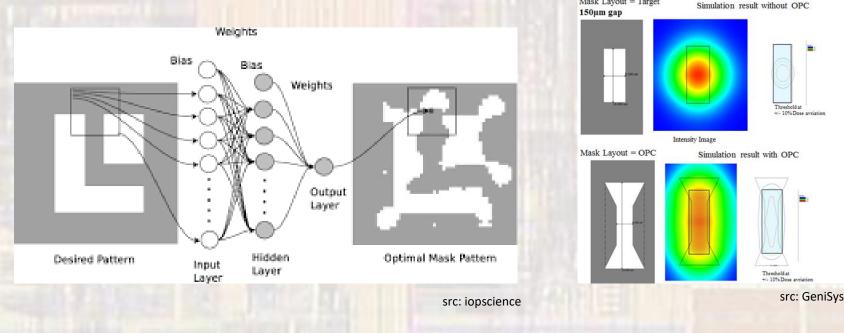
- Photo mask creation
 - Glass or Quartz substrate covered with chrome
 - A photo-resist is applied across the substrate
 - Light (UV) or an electron beam is used to "write" the desired pattern onto the substrate/photoresist
 - Where the beam hits the photoresist it either becomes
 - Less soluble negative photoresist
 - More soluble positive photoresist
 - The mask is then cleaned with a photo-resist solvent
 - Leaving behind photoresist in the
 - Exposed areas negative photoresist
 - Un-exposed areas positive photoresist
 - The mask is then etched with a chrome solvent
 - Removing chrome wherever the resist is missing
 - Leaving chrome wherever the resists remains


- Photo mask creation
 - The final mask is sandwiched between two glass or chrome pellicles to prevent the chrome from being damaged


- Photo mask creation
 - Reticle vs. Mask
 - Mask is typically used to refer to a pattern that covers an entire wafer
 - Very rare today
 - Reticle is typically used to refer to a pattern that covers only part of a wafer
 - Reticles are "stepped" across the wafer to expose the entire wafer
 - Dimensions
 - Reticles are typically designed at 10-20x the final dimensions desired
 - The masks are then used with optical reduction techniques to pattern the final wafer

- Wafer Patterning
 - The chemical process is very similar to the phot mask creation process
 - A photo-resist is applied across the wafer
 - Light (UV) or an electron beam is passed through the mask and onto the wafer.
 - Where the beam passes through the mask and hits the photoresist it either becomes
 - Less soluble negative photoresist
 - More soluble positive photoresist
 - The wafer is then cleaned with a photo-resist solvent
 - Leaving behind photoresist in the
 - Exposed areas negative photoresist
 - Un-exposed areas positive photoresist
 - The wafer is then processed in one of various methods

- Wafer Patterning
 - Typically reduction is used to pattern the wafer
 - Optical



- Wafer Patterning
 - Modern technologies use x-rays and electron-beams

- Optical Proximity Correction
 - Severe distortion occurs at current lithography sizes
 - Wave nature of electrons
 - Wavelength of optical sources
 - Optical proximity correction pre-biases the mask to account for these distortions

Mask Layout = Target

9