Last updated 6/13/23

These slides introduce addition with Binary Numbers

- Elementary school concepts
 - Add columns of numbers and keep track of the carry over to the next column
 - We normally use the decimal number system
 - Digits: 0-9
 - Carry over is in sets of 10

1 245 245 245 245 189 189 189 189 + 134 **4**34 ELE 1601 2

- Extend elementary school concepts
 - Add columns of numbers and keep track of the carry over to the next column
 - Use the binary number system
 - Digits: 0-1
 - Carry over is in sets of 2

- Overflow
 - In elementary school we did not care how many digits the answer required 745
 + 589
 1334
 - In binary addition we are generally representing something that ultimately is to be executed in hardware
 - Our hardware cannot change the number of bits (wires) it can hold
 - We must establish a maximum number size (# of bits) and create an error when the result of the addition does not fit in this size
 - The error is called an overflow

- Overflow Unsigned
 - Overflow is defined as:
 - Result does not fit into the allowed # of bits

3 bit addition 101 <u>+ 011</u> 1000	5 bit addition 00101 + 00011 01000	^{6 bit addition} 010101 <u>+ 101011</u> 1010000	8 bit addition + 00001001 10100110
overflow	ОК	overflow	ОК

Our programs will ignore the overflow and just give us the bits that fit

- Overflow signed(2's complement)
 - Overflow is defined as:
 - carry-in of the msb \neq carry-out of the msb \rightarrow overflow
 - Our result may exceed the allowed # of bits and still be OK
 - Extra bits are ignored

4	0		>	1	1	1	1	1					1	>			1	1	1			
		0	1	0	0	0	1	1	1		71		1	1	0	0	0	1	1	1		-57
_	+	0	0	0	1	1	1	0	1	+	29	+	1	1	1	1	0	1	0	1	+	-11
		0	1	1	0	0	1	0	0		100	4	1	0	1	1	1	1	0	0		-68
4	0	1)1	1	1	1	1	1						>			1	1	1			
		0	1	1	0	0	1	1	1		103		1	1	0	0	0	1	1	1		-57
_	+	0	0	1	1	1	1	0	1	+	61	+	1	0	0	0	0	1	0	1	+	-123
		1	0	1	0	0	1	0	0		164	1/	0	1	0	0	0	1	0	0		-180
ov	erf	lov	V	-2	28							ove	flo	W	6	8						

8 bit signed addition

Our programs will ignore the overflow and just give us the bits that fit