Bit Manipulation

Last updated 6/16/23

These slides show how to manipulate individual digital bits

Bit Manipulation

- Terminology

- Consider an 8 bit value
abcd efgh where the values are unknown to us, but are either 0 or 1
e.g. abcd efgh where a,d,f,g are 1, the others are $0 \rightarrow 10010110$
- Bitwise
- Match bits between two values and perform the desired operation bit by bit - resulting in a new binary number

```
abcd efgh bitwise-AND ijkl mnop }->\mathrm{ (a and i) (b and j) (c and k) ...
10111010 bitwise-AND 1100 1001 -> |lll:l:l:l:l:lll
```

- Bitwise operators: AND, OR, NOT, XOR

Bit Manipulation

- Bit testing

- How can we determine the value of just 1 bit out of the 8?
- If we want to know the value of bit 3 (e) we can bitwise-AND the value with another 8 bit value with just bit 3 set to 1

```
abcd efgh & 0000 1000 -> 0000 e000
```

- If e is 1 then the result will be 8
- If e is 0 then the result will be 0
- We can test the result to determine what value e has
- Result $=0 \rightarrow$ e must be 0
- Result $=8 \rightarrow$ e must be 1
- Result $>0 \rightarrow$ e must be 1
- Result $<1 \rightarrow$ e must be 0
- Result $=$ TRUE \rightarrow e must be 1
- Result $=$ FALSE \rightarrow e must be 0

Bit Manipulation

- Bit setting
- How can we set the value of a bit to 1 (set)?
- We can bitwise-OR the value with another 8 bit value with just the desired bit(s) set to 1

```
Set bit 3(}
abcd efgh | 0000 1000 -> abcd 1fgh
```

Set bits 6,4 , and $3(\rightarrow 1)$
abcd efgh | $01011000 \rightarrow$ a1c1 1fgh

Bit Manipulation

- Bit clearing
- How can we set the value of a bit to 0 (clear)?
- We can bitwise-AND the value with another 8 bit value with just the desired bit(s) set to 0 , all others set to 1

```
Clear bit 3(}->0
abcd efgh & 11110111 }->\mathrm{ abcd Ofgh
```

Clear bits 6,4 , and $4(\rightarrow 0)$
abcd efgh \& $10100111 \rightarrow$ a0c0 Ofgh

Bit Manipulation

- Bit clearing
- How can we set the value of a bit to 0 (clear)?
- If we prefer to indicate the bits to clear with a 1 we can use

```
    Clear bit 3(}->0
abcd efgh & ~ (0000 1000)
    abcd efgh & 11110111 -> abcd Ofgh
```

 Clear bits 6,4 , and \(4(\rightarrow 0)\)
 I. abcd efgh \& ~(0101 1000)

Bit Manipulation

- Using Hex
- Reminder: not all systems allow binary numbers in the code - we use hex instead

$$
\text { foo }=\text { abcd efgh }
$$

Test bit 3

$$
s o o=\text { foo \& 0x08 } \quad \rightarrow \text { soo }=0000 \mathrm{e} 000
$$

Set bits 6, 4, and 3
soo $=\mathrm{foo} \mid 0 \times 58 \quad \rightarrow$ soo $=$ a1c1 1 fgh
Clear bit 3

$$
\text { soo = foo \& 0xF7 } \quad \rightarrow \text { soo }=\text { abcd Ofgh }
$$

Clear bits 6, 4, and 4

$$
\text { soo }=\text { foo } \& \sim(0 x 58) \quad \rightarrow \text { soo }=\text { a0c0 Ofgh }
$$

