
Debug

Last updated 6/19/23

2 © tjELE 1601

Debug

• Easy Debug Tactics
• Print out intermediate information

printf(“I reached this point”);

printf(“foo = %i\n”, foo);

• Break problems into pieces
foo = a | b << c * d++ - 3 /b % 6;

→

foo = d++;

printf(“foo = %i\n”, foo);

foo = c * d++ ;

printf(“foo = %i\n”, foo);

…

3 © tjELE 1601

Debug

• Debugger
• Most C tool chains include a debugger

• The debugger allows
• Stopping execution

• Stepping line – by – line

• Tracking variable values

• Follow execution into and out of functions

4 © tjELE 1601

Debug

• Debugger - Eclipse Perspectives
• Eclipse has a series of pre-defined window configurations

• Each configuration is optimized for a specific purpose

• If your windows get messed up
• rt-click on the current perspective → Reset

select perspective current perspective

5 © tjELE 1601

Debug

• Eclipse Debugger – Work-around
• The debugger does not work in the UI console window
• To work-around this issue we will use an external terminal window

• rt-click the project name New→ File

• provide the file name .gdbinit

• In the opened file type set new-console on
• save

• Note – the file will not show up in the Project Explorer list

6 © tjELE 1601

Debug

• Debugger Tool - Example program

7 © tjELE 1601

Debug

• Eclipse Debugger
• rt-click on your project → Debug As →

Local C/C++ Application

• Select Switch to change the perspective

8 © tjELE 1601

• Eclipse Debugger
• The Eclipse perspective will be changed

• A console window will be opened

Debug

Variables
WindowCode

WindowDebugger
Status

Window

I/O (Console) Window

9 © tjELE 1601

Debug

Program is
halted at first

executable line
in main

Play
Pause
Stop

Arrow points to the
NEXT

line to be executed

10 © tjELE 1601

Debug

• Eclipse Debugger – default data change
• The debugger defaults to not-showing the memory

location of variables
• To modify this to show the memory location of variables

• Click the 3-vertical-dots in the variable window

• Select Layout → Select Columns

• Check the Location box

11 © tjELE 1601

Debug

Variables:
Only those in the current scope

Values
currently garbage

Memory
Location

12 © tjELE 1601

Debug

Step Into: Execute the current instruction
Go into a function

Step Over: Execute an entire function call

Step Return: Complete the current element and return
Complete a function
Finish a For/Switch/While statement

13 © tjELE 1601

Debug

jumps to next executable command

No change → white

step over – so we don’t go into
setbuf function

Executes the setbuf function

14 © tjELE 1601

Debug

jumps to next executable command

Value change
highlighted in yellow

Step into or step over

Executes the x=3 statement

15 © tjELE 1601

Debug

jumps to next executable command

Step into or step over
5 times

Executes the y, aa, bb, one,
and two statements

Note: Chars show
value and ascii

Note: 2.222 cannot be
represented exactly in
floating point

16 © tjELE 1601

Debug

jumps to next executable command

Step Over – we do not
want to go into the
printf()

Executes the printf()
statement

Console window shows printf()
results

17 © tjELE 1601

Debug

jumps to next executable command

Step Over – we do not
want to go into the
splash()

Executes the splash()
statement

Console window shows splash()
results

18 © tjELE 1601

Debug
Step Into – we are now
in the read_input
function

Entered read_input and
created storage for the
formal parameters

Note: only in-scope variables are
visible

Note: pointers are indicated with
an arrow and show the pointer
value (memory location pointed
to)

Expanding a pointer shows the
value it points to

19 © tjELE 1601

Debug

On scanf() the debugger
stops and waits for user
input (via the separate
console window)

output suspended

Step over the printf()

Step over the scanf()

20 © tjELE 1601

Debug

values updated

type in values and hit return

jumps to next executable command

21 © tjELE 1601

Debug

jumps to the closing brace on the
function

Step into or step over

22 © tjELE 1601

Debug

jumps to next executable command

Step into or step over

Returns to main Values that were
updated via pointer
show updates in the
main() scope

23 © tjELE 1601

Additional Things we can do in the debugger

24 © tjELE 1601

Debug

Executes all the commands up-to but
not including the line selected

Instead of single stepping
Right click on a line and select run_to

25 © tjELE 1601

Debug

Executes all the commands up-to but not
including the line with the breakpoint

Instead of single stepping

Right click on the blue area next to a line and
select toggle breakpoint

Then hit run

Breakpoint bubble

Right click on the blue area next to a line and select
toggle breakpoint – to turn it off again

26 © tjELE 1601

Debug

Would like to stop
when a c is entered

27 © tjELE 1601

Debug

Executes until the breakpoint is
encountered – then stops in debug mode

Instead of single stepping

Right click on the blue area next to a line and
select toggle breakpoint (a = 7)

Then hit run

Breakpoint bubble

Right click on the blue area next to a line and select
toggle breakpoint – to turn it off again

Runs through the loop for a and t
Encounters the breakpoint for c

	Slide 1: Debug
	Slide 2: Debug
	Slide 3: Debug
	Slide 4: Debug
	Slide 5: Debug
	Slide 6: Debug
	Slide 7: Debug
	Slide 8: Debug
	Slide 9: Debug
	Slide 10: Debug
	Slide 11: Debug
	Slide 12: Debug
	Slide 13: Debug
	Slide 14: Debug
	Slide 15: Debug
	Slide 16: Debug
	Slide 17: Debug
	Slide 18: Debug
	Slide 19: Debug
	Slide 20: Debug
	Slide 21: Debug
	Slide 22: Debug
	Slide 23
	Slide 24: Debug
	Slide 25: Debug
	Slide 26: Debug
	Slide 27: Debug

