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These slides introduce dynamic memory allocation
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Dynamic Memory Allocation

• Stack
• A section of Data memory

• Used to hold all temporary variables whose size is known 
at compile time
• Return address for a function

• Copies of parameters passed into a function

• Return value

• Temporary variables used in a function
• Counters, …

• An array with 26 elements inside a function

• Note – main is just another function
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Dynamic Memory Allocation

• Heap
• Section of Data memory

• Dynamic memory
• Created and destroyed by the program

• Persists until you de-allocate it

• Typically, dependent on run time information
• The heap is used to hold all variables whose size are not known at 

compile time
• Store a list of numbers from the user, where the # of inputs is not known 

ahead of time

• Can be accessed throughout the program and its functions
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Dynamic Memory Allocation

• Data Memory
• Stack and heap grow towards each other
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Dynamic Memory Allocation

• Commands to allocate Heap memory
• malloc – allocates a block of memory without initialization

• calloc – allocates a block of memory initialized to 0

• realloc – changes the total amount of memory allocated

• All return a pointer – if the memory cannot be allocated (not 
enough memory left), the pointer is NULL

• Check to see if the allocation was successful

… action to create memory allocation

// check for success
if(mem_ptr == NULL){

printf("failed to allocate memory");
exit(0);

}
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Dynamic Memory Allocation

• Commands
• malloc – allocates a block of memory without initialization

• Input parameter is the # of bytes to allocate
• Returns a void pointer - void pointers can be cast to any other type of 

pointer
• Typically use an assignment cast to modify the void pointer

Prototype:
void * malloc(size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
size is the number of bytes to allocate 

Note: 25 integers would require size to be 100 in a 32b system
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Dynamic Memory Allocation

• Example - malloc

Note garbage outside 
allocated range

Note the use of sizeof(type) to get the 
correct # of bytes independent of system

Stack memory locations

Heap memory locations
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Dynamic Memory Allocation

• Commands
• calloc – allocates a block of memory initialized to 0

• Input parameters:
• # of elements to allocate
• Size (in bytes) of each element

• Returns a void pointer - void pointers can be cast to any other type of 
pointer

• Typically use an assignment cast to modify the void pointer

Prototype:
void * calloc(size_t nmemb, size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
nmemb is the # of elements to reserve space for
size is the size of each element in bytes
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Dynamic Memory Allocation

• Example - calloc

Note garbage outside 
allocated range

Initialized to 0
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Dynamic Memory Allocation

• Commands
• realloc – changes the total amount of memory allocated

• Input parameters:
• Pointer to an existing allocated memory block
• New size of the allocation

• Returns a void pointer - void pointers can be cast to any other type of 
pointer

• Typically use an assignment cast to modify the void pointer

Prototype:
void * realloc(void * ptr, size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
ptr is a pointer to an existing allocated block of memory
size is the new total size of the block in bytes
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Dynamic Memory Allocation

• Example - realloc

Reallocated locations
cannot be initialized
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Dynamic Memory Allocation

• Commands
• Free – deallocate a block of memory
• Dynamic memory allocated during program execution persists until 

either
• The end of the run
• The memory is de-allocated

• Failure to clean up no longer needed allocated memory can cause 
the program to run out of memory over time
• Called a memory leak

• Input parameters:
• Pointer to an existing allocated memory block

Prototype:
void  free(void * ptr)

ptr is a pointer to an existing allocated block of memory

All of my examples should
have deallocated the Heap
memory before ending
but we didn’t have this 
command yet
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