Last updated 6/22/23

These slides introduce dynamic memory allocation



ELE 1601

e Stack

e A section of Data memory

* Used to hold all temporary variables whose size is known

at compile time

Return address for a function

Copies of parameters passed into a function
Return value

Temporary variables used in a function

* Counters, ...
* An array with 26 elements inside a function

* Note — main is just another function

© tj



ELE 1601

* Heap
Section of Data memory

Dynamic memory
* Created and destroyed by the program

Persists until you de-allocate it

Typically, dependent on run time information
* The heap is used to hold all variables whose size are not known at
compile time

e Store a list of numbers from the user, where the # of inputs is not known
ahead of time

Can be accessed throughout the program and its functions

© tj



* Data Memory
e Stack and heap grow towards each other

End —
Stack Temporary
Ny 'l' | SN values
Dynamically allocated
created during execution
T | Execution
________ _ created and
Heap destroyed
Allocated but
Bss — 9+ - g
not initialized _
- _ Statically allocated
Hatd | Allocated and assigned by the compiler
N initialized
Beginning ¢ A
ELE 1601 4

© tj



* Commands to allocate Heap memory
* malloc — allocates a block of memory without initialization
 calloc — allocates a block of memory initialized to 0
* realloc — changes the total amount of memory allocated

e All return a pointer — if the memory cannot be allocated (not
enough memory left), the pointer is NULL

* Check to see if the allocation was successful

. action to create memory allocation

// check for success

if(mem _ptr == NULL){
printf("failed to allocate memory");
exit(9);

}

ELE 1601 5 © tj




ELE 1601

e Commands

* malloc — allocates a block of memory without initialization
* Input parameter is the # of bytes to allocate

* Returns a void pointer - void pointers can be cast to any other type of
pointer

* Typically use an assignment cast to modify the void pointer

Prototype:
void * malloc(size t size)

return type is void * - void pointer

size_tis the size of an integer in the current implementation (think int)
- this is the type returned by sizeof()

size is the number of bytes to allocate

Note: 25 integers would require size to be 100 in a 32b system



* Example - malloc

¥ dynamic_mem.c

Created on: Dec 18, 2828
Author: johnsentimo]

#include <stdio.h:>
#include <stdlib.h=

int main{void){
setbuf (stdout, NULL); // disable buffering
int my_ary[1@];
int i;

'/ create pointer for memory allocation
int * mem_ptr;

'/ attempt to alloccate the memory
'/ equivalent for 18 ints
mem_ptr = malloc(l@*sizeof|(int)];
if(mem_ptr == NULL){
printf({“failed to allccate memory™);
exit(@);

/f Fill array

for{i = 8; 1 < 18; i++)q
my ary[i] = 4%i;

}

// print the array bounds
printf("%p %p", my_ary, &my ary[9]);

/! copy to allocated memory
for(i = 8; i < 18; i++){

*(mem_ptr + 1) = my_ary[i];
¥

/f print memory section + 1 too far

for{i = @8; 1 < 11; i++){
printf("¥ivn", *(mem_ptr+i)};

¥

/f print the memory bounds

printf("¥p ¥p", mem_ptr, mem _ptr + 9);
return &8;

end main

ELE 1601

Note the use of sizeof(type) to get the
correct # of bytes independent of system

<terminated> (exit value: 0] C
Bec1FEFD BRGIFF14D

a
8

12
16
28
24
28
32
36

Stack memory locations

Heap memory locations

Note garbage outside
bl T -
1997987489 4—% allocated range
@8711DC8 @0711DEC

© tj




ELE 1601

e Commands

 calloc —allocates a block of memory initialized to 0
* |nput parameters:
* # of elements to allocate
» Size (in bytes) of each element

e Returns a void pointer - void pointers can be cast to any other type of
pointer

e Typically use an assignment cast to modify the void pointer

Prototype:
void * calloc(size_t nmemb, size t size)

return type is void * - void pointer

size_tis the size of an integer in the current implementation (think int)
- this is the type returned by sizeof()

nmemb is the # of elements to reserve space for

size is the size of each element in bytes



ELE 1601

* Example - calloc

¥ dynamic_mem.c

Created an: Dec 18, 2828
Author: johnsontimog

#include <stdio.h>
#include <stdlib.h:

Fint main{wvoid){
setbuf(stdout, MNULL);
int 1i;

'/ disable buffering

f create pointer for memory allocation
int * mem_ptr;

'/ attempt to allocate the memory
'/ equivalent for 18 ints
mem_ptr = calloc(1®, sizeof(int));
if(mem_ptr == NULL){
printf({"failed to allocate memory"™);
exit(@);

'/ wverify contents

// print memory section + 1 too far

for(i = @; 1 < 11; i++)q
printf{"%¥ivn", *(mem_ptr+i));

¥

// print the memory bounds
printf({"¥p ¥p", mem_ptr, mem ptr + 9);
return @;

Y/ end main

<terminated> (exit value: 0) Class_Project.exe [C

—

/ allocated range
-4994312465

eeAS1CAE @BAS1CES

L— Initializedto O

3 EEEE

Note garbage outside



ELE 1601

e Commands

* realloc — changes the total amount of memory allocated
* |nput parameters:
* Pointer to an existing allocated memory block
* New size of the allocation

e Returns a void pointer - void pointers can be cast to any other type of
pointer

e Typically use an assignment cast to modify the void pointer

Prototype:
void * realloc(void * ptr, size_t size)

return type is void * - void pointer

size_tis the size of an integer in the current implementation (think int)
- this is the type returned by sizeof()

ptr is a pointer to an existing allocated block of memory

size is the new total size of the block in bytes

10

© tj



* Example - realloc

* dynamic_mem.c

Created on: Dec 18, 2828
Author: johnsentimo]

#include <stdic.h>
#include <stdlib.h>

int main{void){
setbuf(stdout, MULL); // disable buffering

int 1i;

// create pointer for memory allocation
int * mem_ptr;

// attempt to allocate the memory
// equivalent for 18 inks
mem_ptr = calloc({18, sizeof(int));
if(mem_ptr == NULL){
printf({"failed to allocate memory™)
exit(8);

Y/ end main

// wverify contents
// print memory section + 1 too far
for{i = 8; i < 11; i++){
printf("¥i\n", *(mem_ptr+i));
¥
/S print the memory bounds
printf{"%p %p'n", mem_ptr, mem_ptr + 9);

!/ extend the memory allocation
// for 5 additional ings

mem_ptr = realloc({mem_ptr, 15*sizeof(int));

if(mem_ptr == NULL){
printf("failed teo allocate memory™);
exit(8);

}

/S werify contents

// print memory section + 1 too

for{i = 8; 1 < 16; i++){
printf({"¥i\n", *(mem_

¥

f// print the memory

printf{"%p ¥p", 14);

return 8;

ELE 1601

11

<terminated= (exit value:

[~ R o

:

llocated locations
cannot be initialized

/

o @ @ @

le@o63382

49888

JBa5312

Javgase
1818582885
BBB857957
eaeClC4e eacClCys

Ot



ELE 1601

e Commands

* Free — deallocate a block of memory

* Dynamic memory allocated during program execution persists until

either
* The end of the run
* The memory is de-allocated

* Failure to clean up no longer needed allocated memory can cause

the program to run out of memory over time
* Called a memory leak

* Input parameters:
e Pointer to an existing allocated memory block

Prototype:
void free(void * ptr)

ptr is a pointer to an existing allocated block of memory

12

All of my examples should
have deallocated the Heap
memory before ending
but we didn’t have this
command yet

© tj



	Slide 1: Dynamic Memory Allocation
	Slide 2: Dynamic Memory Allocation
	Slide 3: Dynamic Memory Allocation
	Slide 4: Dynamic Memory Allocation
	Slide 5: Dynamic Memory Allocation
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation
	Slide 8: Dynamic Memory Allocation
	Slide 9: Dynamic Memory Allocation
	Slide 10: Dynamic Memory Allocation
	Slide 11: Dynamic Memory Allocation
	Slide 12: Dynamic Memory Allocation

