
Dynamic Memory
Allocation

Last updated 6/22/23

These slides introduce dynamic memory allocation

2 © tjELE 1601

Dynamic Memory Allocation

• Stack
• A section of Data memory

• Used to hold all temporary variables whose size is known
at compile time
• Return address for a function

• Copies of parameters passed into a function

• Return value

• Temporary variables used in a function
• Counters, …

• An array with 26 elements inside a function

• Note – main is just another function

3 © tjELE 1601

Dynamic Memory Allocation

• Heap
• Section of Data memory

• Dynamic memory
• Created and destroyed by the program

• Persists until you de-allocate it

• Typically, dependent on run time information
• The heap is used to hold all variables whose size are not known at

compile time
• Store a list of numbers from the user, where the # of inputs is not known

ahead of time

• Can be accessed throughout the program and its functions

4 © tjELE 1601

Dynamic Memory Allocation

• Data Memory
• Stack and heap grow towards each other

Heap

Bss

Data

Stack

Beginning

End

Statically allocated
assigned by the compilerAllocated and

initialized

Allocated but
not initialized

Dynamically allocated
created during execution

Execution
created and
destroyed

Temporary
values

5 © tjELE 1601

Dynamic Memory Allocation

• Commands to allocate Heap memory
• malloc – allocates a block of memory without initialization

• calloc – allocates a block of memory initialized to 0

• realloc – changes the total amount of memory allocated

• All return a pointer – if the memory cannot be allocated (not
enough memory left), the pointer is NULL

• Check to see if the allocation was successful

… action to create memory allocation

// check for success
if(mem_ptr == NULL){

printf("failed to allocate memory");
exit(0);

}

6 © tjELE 1601

Dynamic Memory Allocation

• Commands
• malloc – allocates a block of memory without initialization

• Input parameter is the # of bytes to allocate
• Returns a void pointer - void pointers can be cast to any other type of

pointer
• Typically use an assignment cast to modify the void pointer

Prototype:
void * malloc(size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
size is the number of bytes to allocate

Note: 25 integers would require size to be 100 in a 32b system

7 © tjELE 1601

Dynamic Memory Allocation

• Example - malloc

Note garbage outside
allocated range

Note the use of sizeof(type) to get the
correct # of bytes independent of system

Stack memory locations

Heap memory locations

8 © tjELE 1601

Dynamic Memory Allocation

• Commands
• calloc – allocates a block of memory initialized to 0

• Input parameters:
• # of elements to allocate
• Size (in bytes) of each element

• Returns a void pointer - void pointers can be cast to any other type of
pointer

• Typically use an assignment cast to modify the void pointer

Prototype:
void * calloc(size_t nmemb, size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
nmemb is the # of elements to reserve space for
size is the size of each element in bytes

9 © tjELE 1601

Dynamic Memory Allocation

• Example - calloc

Note garbage outside
allocated range

Initialized to 0

10 © tjELE 1601

Dynamic Memory Allocation

• Commands
• realloc – changes the total amount of memory allocated

• Input parameters:
• Pointer to an existing allocated memory block
• New size of the allocation

• Returns a void pointer - void pointers can be cast to any other type of
pointer

• Typically use an assignment cast to modify the void pointer

Prototype:
void * realloc(void * ptr, size_t size)

return type is void * - void pointer
size_t is the size of an integer in the current implementation (think int)

- this is the type returned by sizeof()
ptr is a pointer to an existing allocated block of memory
size is the new total size of the block in bytes

11 © tjELE 1601

Dynamic Memory Allocation

• Example - realloc

Reallocated locations
cannot be initialized

12 © tjELE 1601

Dynamic Memory Allocation

• Commands
• Free – deallocate a block of memory
• Dynamic memory allocated during program execution persists until

either
• The end of the run
• The memory is de-allocated

• Failure to clean up no longer needed allocated memory can cause
the program to run out of memory over time
• Called a memory leak

• Input parameters:
• Pointer to an existing allocated memory block

Prototype:
void free(void * ptr)

ptr is a pointer to an existing allocated block of memory

All of my examples should
have deallocated the Heap
memory before ending
but we didn’t have this
command yet

	Slide 1: Dynamic Memory Allocation
	Slide 2: Dynamic Memory Allocation
	Slide 3: Dynamic Memory Allocation
	Slide 4: Dynamic Memory Allocation
	Slide 5: Dynamic Memory Allocation
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation
	Slide 8: Dynamic Memory Allocation
	Slide 9: Dynamic Memory Allocation
	Slide 10: Dynamic Memory Allocation
	Slide 11: Dynamic Memory Allocation
	Slide 12: Dynamic Memory Allocation

