
Enumerated Types

Last updated 6/22/23

These slides introduce enumerated types in C

2 © tjELE 1601

Enumerated Types

• C Types

Derived

Function Array Pointer Structure Union Enumerated

3 © tjELE 1601

Enumerated Types

• Typedef

• Define a new Type

• Inherits members and operations from a standard or
previously defined derived type

• Typically done in global area so all parts of the program
will recognize it

typedef type IDENTIFIER;

typedef int AGE; // define a new type called AGE

// that acts like an int

4 © tjELE 1601

Enumerated Types

• Enum
• Compile time coding aid (helps readability)

• Assign a limited number of values(words) to a variable

• Define its name and its members (enumerate them)

• Members are mapped to integer values
• Normally 0 - n

enum typeName {idenitifier list};

enum wireColor {RED, BLUE, BLACK, WHITE};

wireColor recognizes the words RED, BLUE, BLACK and WHITE as values

RED is mapped to 0, WHITE is mapped to 3

5 © tjELE 1601

Enumerated Types

• 2 ways to create enumerated variables - 1

• Identify each variable as an enum variable

enum wireColor {RED, BLUE, BLACK, WHITE}; // definition

enum wireColor power; // declarations

enum wireColor gnd;

enum wireColor signal;

Advantage: Always reminded it is an enum

global

6 © tjELE 1601

Enumerated Types

• 2 ways to create enumerated variables - 2

• Create a new type that is an enum type
typedef type IDENTIFIER;

typedef enum {RED, BLUE, BLACK, WHITE} wireColor; // definition

wireColor power; // declarations

wireColor gnd;

wireColor signal;

type

Advantage: Don’t need to keep indicating it is an enum

global

7 © tjELE 1601

Enumerated Types

• Assign/Use Values

power = BLACK;

gnd = WHITE;

signal = RED;

if(wire11 == RED){

…

}

8 © tjELE 1601

Enumerated Types

• Operations – typedef definition
• Enumerated types are stored as integers

• All integer operations can be applied to an enumerated
type

• No checking is done to ensure the result is valid

typedef enum {JAN, FEB, MAR, … NOV, DEC} month;

month birthMonth; // create a variable of

// type month

if ((birthMonth – 2) >= MAY){

…

0 1 2 10 11

global

9 © tjELE 1601

Enumerated Types

• Operations – enum definition
• Enumerated types are stored as integers
• All integer operations can be applied to an enumerated type
• No checking is done to ensure the result is valid

enum month {JAN, FEB, MAR, NOV, DEC};

enum month birthMonth;
enum month currentMonth;

if (birthMonth > currentMonth){
…

switch(currentMonth){
case JAN: // case 0

…
case FEB: // case 1

…

0 1 2 10 11

global

10 © tjELE 1601

Enumerated Types

• Change of Reference
• Nominal definition

enum month {JAN, FEB, MAR, NOV, DEC};

• Modified definition

enum month {JAN=1, FEB, MAR, … OCT=20,NOV, DEC};

0 1 2 10 11

1 2 3 21 22

11 © tjELE 1601

Enumerated Types

• Anonymous Enumeration
• Same effect as a #define

but

• Subject to scope rules

enum {OFF, ON}; // assign OFF the value 0, ON: 1

enum {SPACE = ‘ ‘, COMMA = ‘,’ , COLON = ‘:’};

12 © tjELE 1601

Enumerated Types

• Scope Considerations

• Generally, we would like our enum or enum type to be visible
anywhere in our file (main and all functions)

• Place enum or typedef in the global regions
• Subsequent variable declarations are subject to normal scope

rules

#include <stdio.h>
enum wireColor {RED, BLUE, BLACK, WHITE};
typedef enum {Jan=1, Feb, …} month;

int main(void){
enum wireColor power;
month bday;
…

}

global

13 © tjELE 1601

Enumerated Types

• Print Considerations

• Printing a enum variable will result in the numerical
value being printed

• If you want the “word” printed you need to create a
function (switch or array) to do it

• see print_month in the example

14 © tjELE 1601

Enumerated Types

random luck that
this is null, outside the
string array bounds

	Slide 1: Enumerated Types
	Slide 2: Enumerated Types
	Slide 3: Enumerated Types
	Slide 4: Enumerated Types
	Slide 5: Enumerated Types
	Slide 6: Enumerated Types
	Slide 7: Enumerated Types
	Slide 8: Enumerated Types
	Slide 9: Enumerated Types
	Slide 10: Enumerated Types
	Slide 11: Enumerated Types
	Slide 12: Enumerated Types
	Slide 13: Enumerated Types
	Slide 14: Enumerated Types

