
File I/O - Text

Last updated 12/6/22

These slides introduce text file operations

2 © tjELE 1601

File I/O - Text

• File Formats
• Files can contain information in 2 different formats

• Text
• Stores characters (numbers are stored as their ascii values)

• Line terminated by a newline (\n)

• Binary
• Raw bytes

• File terminated by “end of file” EOF

0011 0010 0011 0101 0011 0111 0100 0001 0000 0001 0000 0001 0100 0001

257A

ascii 2 5 7 A

257A

binary 257 A

text binary

This assumes 257 was a 16b integer
a full sized int would require 4 bytes 0x00000101

3 © tjELE 1601

File I/O - Text

• File I/O - text
• Need to create a “stream” to transfer the data to/from the

file from/to our program

• Identify the stream by name

• Use a pointer

FILE* pointer_name;

FILE* Student_Data_ptr;

4 © tjELE 1601

File I/O - Text

• Stream Pointer
• Need to identify the file we are creating the stream

to/from

• “open” the file

• assign the pointer to the opened file

file_pointer = fopen(“filename”, “mode”);

Student_Data_ptr = fopen(“ee1601.dat”, “r”);

Student_Data_ptr =

fopen(“C:\\users\\tim\\winter\\ee1601.dat”, “r”);

the file extension .dat
is commonly used

5 © tjELE 1601

File I/O - Text

• File I/O - text
• Open file – modes

r read only, start at beginning

if does not exist → error

w write only, start at beginning (erase all contents)

if does not exist → creates it

a append only, start at end of current data

if does not exist → creates it

Returns address of file or NULL if an error occurs
NULL is defined in the stdio library

6 © tjELE 1601

• Error checking
• If the fopen() returns a NULL – we have an error

File I/O - Text

exit – exits the program
requires <stdlib.h>

7 © tjELE 1601

File I/O - Text

• Close a file

fclose(file_pointer);

fclose(Student_Data_ptr);

8 © tjELE 1601

File I/O - Text

• Formatting stream data – write
• Uses the same formatting conventions as printf

int fprintf(FILE* stream_pointer,

const char* string “control_string”,

…)

… represents additional arguments

returns the # of characters written

9 © tjELE 1601

File I/O - Text

• Write a series of integers to a file

10 © tjELE 1601

File I/O - Text

• Write a series of structures to a file

11 © tjELE 1601

File I/O - Text

• Formatting stream data - read
• Uses the same formatting conventions as scanf

int fscanf(FILE* stream_pointer,

const char* string “control_string”,

…)

… represents additional arguments

returns the # of characters written

12 © tjELE 1601

File I/O - Text

• Read a series of integers from a file

Using the integer file from the write example

13 © tjELE 1601

File I/O - Text

• Read a series of structures from a file

Using the structure file from the write example

	Slide 1: File I/O - Text
	Slide 2: File I/O - Text
	Slide 3: File I/O - Text
	Slide 4: File I/O - Text
	Slide 5: File I/O - Text
	Slide 6: File I/O - Text
	Slide 7: File I/O - Text
	Slide 8: File I/O - Text
	Slide 9: File I/O - Text
	Slide 10: File I/O - Text
	Slide 11: File I/O - Text
	Slide 12: File I/O - Text
	Slide 13: File I/O - Text

