
File I/O - Text
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These slides introduce text file operations
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• File Formats
• Files can contain information in 2 different formats

• Text
• Stores characters (numbers are stored as their ascii values)

• Line terminated by a newline (\n)

• Binary
• Raw bytes

• File terminated by “end of file” EOF

0011 0010 0011 0101 0011 0111 0100 0001 0000 0001 0000 0001 0100 0001

257A

ascii         2                   5                  7                 A

257A

binary               257                       A

text binary

This assumes 257 was a 16b integer
a full sized int would require 4 bytes 0x00000101
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• File I/O - text
• Need to create a “stream” to transfer the data to/from the 

file from/to our program

• Identify the stream by name

• Use a pointer

FILE* pointer_name;

FILE* Student_Data_ptr;
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• Stream Pointer
• Need to identify the file we are creating the stream 

to/from

• “open” the file

• assign the pointer to the opened file

file_pointer = fopen(“filename”, “mode”);

Student_Data_ptr = fopen(“ee1601.dat”, “r”);

Student_Data_ptr = 

fopen(“C:\\users\\tim\\winter\\ee1601.dat”, “r”);

the file extension .dat
is commonly used
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• File I/O - text
• Open file – modes

r  read only, start at beginning

if does not exist → error

w write only, start at beginning (erase all contents)

if does not exist → creates it

a append only, start at end of current data

if does not exist → creates it

Returns address of file or NULL if an error occurs
NULL is defined in the stdio library
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• Error checking
• If the fopen() returns a NULL – we have an error

File I/O - Text

exit – exits the program
requires <stdlib.h>
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• Close a file

fclose(file_pointer);

fclose(Student_Data_ptr );
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• Formatting stream data – write
• Uses the same formatting conventions as printf

int fprintf(FILE* stream_pointer,

const char* string “control_string”,

…  )

… represents additional arguments

returns the # of characters written
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• Write a series of integers to a file
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• Write a series of structures to a file
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• Formatting stream data - read
• Uses the same formatting conventions as scanf

int fscanf(FILE* stream_pointer,

const char* string “control_string”,

…  )

… represents additional arguments

returns the # of characters written
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• Read a series of integers from a file

Using the integer file from the write example
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• Read a series of structures from a file

Using the structure file from the write example
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