
Functions and Data
Memory

Last updated 5/13/25

These slides introduce C functions in Data Memory

2 © tjELE 1601

Functions and Data Memory

• Data Memory Storage
• Typical structure – but variations exist

stack

heap

uninitialized
data

initialized
data

Global and Static
variables

Declared variables
Function parameters

Allocated variables

increasing
addresses

Available space for
stack and heap to grow

Statically allocated
assigned by the compiler

Dynamically allocated
created during execution

3 © tjELE 1601

Functions and Data Memory

• Process when a function is called

1. A stack frame is created to store the function elements on the stack
• A stack pointer is created to access the stack (similar to a program counter)

2. The Program Counter (memory location for the Next instruction to
be executed) is stored on the stack

3. Memory locations are allocated on the stack for any formal
parameters

4. The formal parameter memory spaces are filled with the actual
parameter values passed to the function

5. Space is allocated on the stack for any variables that are local to the
function

6. The function executes (see notes on Functions in Program Memory)
7. The return value is stored in a special register
8. The local and formal variable memory locations are abandoned,

and the stack pointer is updated
9. The Program Counter is reloaded with memory location stored on

the stack in step 1 – continuing the program flow

4 © tjELE 1601

• Function Example - stack
float average(float val1, float val2);
…

int main(void){
 float ave;
 float try1;
 float try2;

 // enter try1, try2 … 9, 3
 …
 ave = average(try1, try2);
 …
 return 0;
}

float average(float val1, float val2){
 float tmp;
 tmp = (val1 + val2)/2;
 return tmp;
}

Functions and Data Memory

t0 t1 t2 t3 t4 t5

ave ? ? ? ? ? 6

try1 ? 9 9 9 9 9

try2 ? 3 3 3 3 3

? ? return
addr

0x1000 0x1000 0x1000 0x1000

? ? val1 9 9 9 9

? ? val2 3 3 3 3

? ? tmp ? 6 6 6

t0

t1

t5

t2

t3

Data Memory - Stack

Many variations to this process exist

result reg ? ? 6 6

t4

5 © tjELE 1601

• Function Example - stack
float average(float val1, float val2);
…

int main(void){
 float ave;
 float try1;
 float try2;

 // enter try1, try2 (9, 3)
 …
 ave = average(try1, try2);
 …
 return 0;
}

float average(float val1, float val2){
 float tmp;
 tmp = (val1 + val2)/2;
 return tmp;
}

Functions and Data Memory

t0 t1 t2 t3 t4 t5

? ? tmp ? 6 6 6

? ? val2 3 3 3 3

? ? val1 9 9 9 9

? ? return
addr

0x1000 0x1000 0x1000 0x1000

try2 ? 3 3 3 3 3

try1 ? 9 9 9 9 9

ave ? ? ? ? ? 6

t0

t1

t5

t2

t3

Data Memory - Stack

Many variations to this process exist

result reg ? ? 6 6

t4

	Slide 1: Functions and Data Memory
	Slide 2: Functions and Data Memory
	Slide 3: Functions and Data Memory
	Slide 4: Functions and Data Memory
	Slide 5: Functions and Data Memory

