Hexadecimal

Last updated 6/14/23

These slides introduce hexadecimal numbers

Hexadecimal

- Hexadecimal
- Base 16 number system
- 0-9
- Represent them with their decimal values
- 10-15
- Represent them with letters of the alphabet
- 10 <-> A (or a)
- 11 <-> B (or b)
- $12<->C$ (or c)
- 13 <-> D (or d)
- 14 <-> E (or e)
- 15 <-> F (orf)

Hexadecimal

- Use hexadecimal (hex) as a shorthand for binary
- Indicate the number is hexadecimal by using 0×1234
- Group sets of 4 binary bits and represent them with the hexadecimal equivalent
- $1011 \rightarrow 0 \times B \quad 0110 \rightarrow 0 \times 6 \quad 1110 \rightarrow 0 x E$
- $10110110 \rightarrow 0 \times 36 \quad 01101110 \rightarrow 0 x 6 \mathrm{E}$
- $1011011001101110 \rightarrow 0 x B 66 E$
- Often it is easier if a space is inserted when writing these
- $1011011001101110 \rightarrow 0 x B 66 \mathrm{E}$

Hexadecimal

- Hexadecimal does not differentiate between signed and unsigned numbers
- Binary $\leftarrow \rightarrow$ Hex
- Just do the conversion
- Decimal $\leftarrow \rightarrow$ Hex
- Must convert to/from signed/unsigned binary first
- When it is not obvious from the context you need to indicate the binary representation that the hex represents
- Address $=0 \times B 66 E \rightarrow$ binary equivalent is unsigned binary $\rightarrow 46,702$
- Data value $=0 \times B 66 E \rightarrow$ binary equivalent is 2's complement $\rightarrow-18,834$

Hexadecimal

- Multiple ways to indicate a hex value
- 12CDh
- h12CD
- \$12CD
- $0 \times 12 C D$
h at end
h at beginning
\$ at beginning
$0 x$ at beginning
- Different processors/people use different shorthand
- We will use 0x

