Last updated 7/31/23

These slides describe linear program flow

* Processor Architecture
e Harvard — separate Instruction and Data memory paths

INSTRUCTION
MEMORY

I
REGISTERS

Program :
Counter |
I

CPU

ELE 1601 2 © tj

* [nstruction Sequencing
* Program Counter (PC)

* Register that holds the NEXT instruction memory location to be
fetched

* Provides the address for the instruction memory read

* In linear program execution
e The PCregister is incremented each clock cycle
* Incremented by the size of an instruction
e e.g. for a 16 bit instruction word the PC would be incremented by 2
* 0x1234 to 0x1236 since each instruction uses up 2 bytes

ELE 1601 3 © tj

ELE 1601

e RISC Instruction set

e 2 basic types of instructions
* Register based instructions
* Memory instructions

* Register Instructions

* Only require access to the internal registers
* Arithmetic
* Logical
e Control

* Memory Operations
* Read or write to memory/registers

Ot

* |nstruction Sequencing

Program Memory

* Program control Read Only - Data

Copy of RAM
Data section

e Linear flow —increment PC normally

Executing —9
instructions —
in line 11 Text

— 3 Executable Code

Exception Vectors

ELE 1601 5

Ot

* |[nstruction Execution

* 6 possible steps for each instruction
e 2 required, 4 optional

depend
on
instruction

—_—

Fetch
Decode
[Execute

Load
Store } Y

Write Back

get next instruction from instruction memory
determine what the instruction is

if necessary — do what the instruction requires
if necessary — get value from data memory

if necessary — place value in data memory

if necessary — store result in register

» After the Fetch — increment the PC to point to the next instruction

ELE 1601

6 © tj

ELE 1601

* 1 line of code - complete

1000
1002
1004
1006
1008
100A
100C

a=b+c;
The compiler turned the single line into 7 instructions

|di R1, 4000

|d R2, R1

|di R1, 4004

|d R3, R1

add R2, R3, R4
|di R1, 4008

st R1, R4

1001 0000
0001 0001
1001 0010
0001 0010
0x27
0x84
0x21

The compiler has assigned
b to memory location 4000
c to memory location 4004
a to memory location 4008

Load loc for B into R1

Put value at loc for B in R2 14 r2, mem(r1)
Load loc for Cinto R1

Put value at loc for Cin R3 1dr3, mem(r1)
R4 <- R2 + R3

Load loc for A into R1

Put value of R4 into loc for A st mem(r1), ra

© tj

e Simplified Block Diagram

Bus(inst)

Data
MEMORY

Instruction
MEMORY

E G E LS

Registers

ELE 1601 8 Ot

e Status

* Data locations filled by previous commands
e PC currently pointing to Instruction memory location 1000

e B Bl

Instruction Data
MEMORY MEMORY

Control

??
?? Registers
??
??

Peripherals

ELE 1601 O©tj

* First Instruction (fetch)

Control puts a memory location from the PC (1000)
on the address bus along with a read signal
Instruction memory returns the value at that location (90)

%

Control
Bus(inst)

- Instruction Data Perioherals
' S MEMORY | MEMORY P
2
7 21
as 2
B 9
92 5

11
ELE 1601 PE-~—+% 90 10 © tj

e First Instruction (decode)

Control decodes the word returned by the
memory and prepares to execute a pre-defined
sequence of events | 90 = Idi R1, 4000

o S Gl

Instruction Data
\[3\" (0134 MEMORY

Control

?? Peripherals

?? Registers
?7?

??

e

ELE 1601 Ot

* First Instruction (execute)

Does nothing for this instruction

90 - Idi R1, 4000

o S Gl

Instruction Data
\[3\" (0134 MEMORY

Control

?? Peripherals

?? Registers
?2?

2?

ey

ELE 1601 O©tj

e First Instruction (mem)

Does nothing for this instruction

90 = Idi R1, 4000

o S Gl

Instruction Data
\[3\" (0134 MEMORY

Control

?? Peripherals

?? Registers
?2?

2?

ey

ELE 1601 O©tj

* First Instruction (write back)

4000
??
??
??

ELE 1601

CPU writes the value(4000) back into a
register(R1)

90 = Idi R1, 4000

o S Gl

Instruction Data Perioherals
MEMORY MEMORY P

Control

Registers

ey

© t]

e New Fetch

4000

??
??

ELE 1601

Control

ALU

Registers

ey

il & Bus(inst)

A
read |

Instruction
MEMORY

92
11
90

Fetch:

- 1002 < 11

Decode: 11 = Id R2, mem(R1) id R2, mem(R1)
Execute: idle

MEM:

Writeback: stores value in R2 (5)

value at location in R1(4000) < (5)

Bus (data - 1/0)

read

15

MEMORY

bata Peripherals

© t]

e New Fetch Fetch: = 1004 & 92
Decode: 92 - |di R1, 4004

Execute: idle
MEM: idle
Writeback: stores value in R1 (4004)

|

Control

a:_—mﬁ

Instruction
4004
5 Registers MEMORY

2?
2?

Data

MEMORY Peripherals

21
84
27
12

PC ——» 92
11

ELE 1601 = 16 © tj

* New Fetch Fetch:
Decode:
Execute:
MEM:

Writeback: stores value in R3 (9)

- 1006 < 12

12 = Id R3, R1 id R3, mem(R1)

idle

value at location in R1(4004) < (9)

Bus (data - 1/0)

Control s

4004

??

92
11

ELE 1601 20 17

Bus(inst) 9
‘ ’ read
ALU read

Instruction Data
5 Registers MEMORY MEMORY

Peripherals

* New Fetch Fetch:
Decode:
Execute:
MEM:
Writeback: stores value in R4 (14)

- 1008 < 27

27 2 add R2, R3, R4
addsR2+R3 > 14
idle

Bus (data - 1/0)

Control

DUS(INSL,
read u

11
ELE 1601 20 18

Instruction Data
5 Registers MEMORY MEMORY

Peripherals

e New Fetch

Control

5 Registers

ELE 1601

Instruction
MEMORY

11
90

Fetch: - 100A < 84
Decode: 84 — |di R1, 4008

Execute: idle
MEM: idle

Writeback: stores value in R1 (4008)

19

Bus (data - 1/0)

Data
MEMORY

© t]

* New Fetch Fetch: - 100C < 21

4008

14

ELE 1601

Decode: 21 = st Rl, R4 st mem(R1), R4
Execute: idle

MEM: R4(14) - location in R1(4008)
Writeback: idle

Bus (\data - 1/0)
Control

()()
1 Bus(inst) 14

write

ALU read

Instruction Data

S IEELS
Registers MEMORY MEMORY P

92 5

0ad}
= 20 © tj

	Slide 1: Linear Program Execution
	Slide 2: Linear Program Execution
	Slide 3: Linear Program Execution
	Slide 4: Linear Program Execution
	Slide 5: Linear Program Execution
	Slide 6: Linear Program Execution
	Slide 7: Linear Program Execution
	Slide 8: Linear Program Execution
	Slide 9: Linear Program Execution
	Slide 10: Linear Program Execution
	Slide 11: Linear Program Execution
	Slide 12: Linear Program Execution
	Slide 13: Linear Program Execution
	Slide 14: Linear Program Execution
	Slide 15: Linear Program Execution
	Slide 16: Linear Program Execution
	Slide 17: Linear Program Execution
	Slide 18: Linear Program Execution
	Slide 19: Linear Program Execution
	Slide 20: Linear Program Execution

