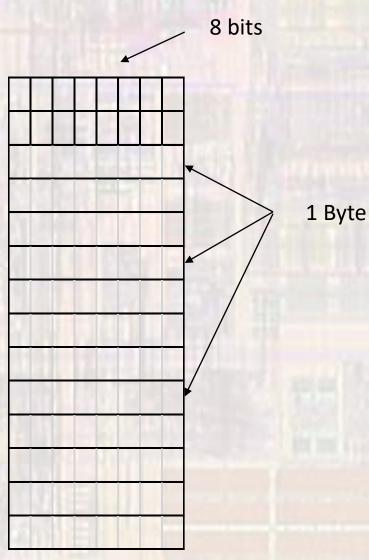

Last updated 6/13/23

These slides introduce semiconductor memories

- Many Types of memory
 - Paper tape
 - Cards
 - Magnetic Tape
 - Floppy Disk
 - Hard Drive (Magnetic)
 - Optical Drive
 - Integrated Circuit Memory

- 2 Key Concepts for Integrated Circuit memory
 - ROM
 - ROM read only memory
 - Fixed values memory cannot be changed
 - RAM
 - RAM random access (really Read/Write = R/W)
 - Memory can be changed

Integrated Circuit Memory


- Non Volatile
 - Retains its values even when power is removed
 - ROM
 - NAND and NOR Flash
 - EPROM, EEPROM
- Volatile
 - Loses its values when power is removed
 - Static When powered, retains value without any extra effort
 - Registers
 - SRAM Static RAM
 - Dynamic When powered, requires periodic refresh or values will degrade
 - DRAM Dynamic RAM
 - SDRAM Synchronous DRAM (DDR, DDR2, DDR3, DDR4, ...)

- Key Measures
 - Density
 - Amount of storage in a given area
 - Speed
 - Read or Write speed
 - Can be different for first access vs. follow on accesses
 - Power
 - Static powered up but not doing anything
 - Dynamic reading or writing
 - Cost / bit
 - Function of complexity and density

- Integrated Circuit Memory
 - Minimum logical element
 - 1 bit (b)
 - Has a logical value of '0' or '1'
 - Has a physical value of "vdd" or "gnd"
 - 5v, 3.3v, <mark>2.4v, 1.8v, 1.2v</mark>
 - Minimum accessible storage element
 - 1- Byte (B)
 - 8 bits
 - Minimum Addressable element
 - 1 Word
 - Situational dependent length
 - 1B, 2B, 4B, 8B, 16B, ...

- Integrated Circuit Memory
 - Logical configuration
 - Long column of bytes
 - 1st address is "0"
 - Typically thought of as growing up
 - Sometimes thought of as growing down

Integrated Circuit Memory

- Even though we may not have stored anything in a specific memory location
- It has a value
- The value is likely random

Addr 3
Addr 2
Addr 1
Addr 0

	T	Т	U	T	T	U	Т	T
	0	1	1	0	0	0	0	0
	0	1	0	0	1	1	0	1.
	0	1	0	1	0	1	1	1
	1	1	0	0	0	1	0	0
	1	0	0	0	1	0	0	1
	1	0	1	0	1	1	1	1
	1	1	1	0	1	0	1	0
	0	1	0	0	0	0	1	0
	0	0	1	1	0	1	1	0
3	0	0	1	1	0	1	1	1
2	1	0	1	0	1	1	1	0
1	1	1	1	0	1	1	0	0
)	1	0	1	1	1	0	1	0

1 1 0 1 1 0 1

1 Byte

8 bits

- Integrated Circuit Memory
 - Write
 - Provide Address and Data
 - Write (addr 4, 11101000)
 - Write (addr 6, 00000101)
 - Write (addr 10, 11001010)
 - Note: Writing overwrites existing data Addr

	0	0	1	0	0	1	1	1
	1	1	1	0	1	0	0	0
	0	0	0	1	1	1	0	1
	1	1	0	0	1	0	1	0
	0	1	1	1	1	0	1	1
	0	0	0	1	0	0	0	1
	0	0	0	1	1	1	0	1
	0	0	0	0	0	1	0	1
	1	0	1	1	0	1	0	0
	1	1	1	0	1	0	0	0
3	1	0	0	1	0	1	1	1
3 2	1	1	0	1	1	1	0	1
1	1	1	0	1	0	1	0	0
0	1	0	1	0	1	0	0	1

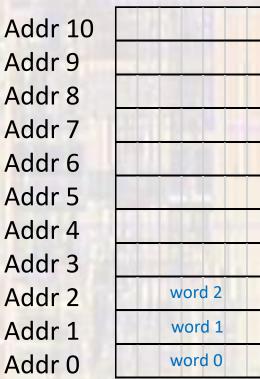
Addr

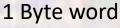
Addr

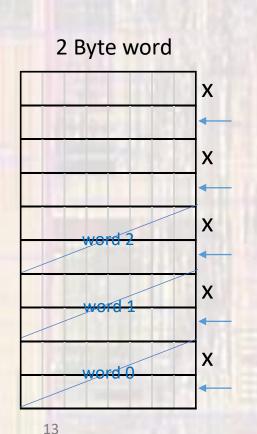
Addr

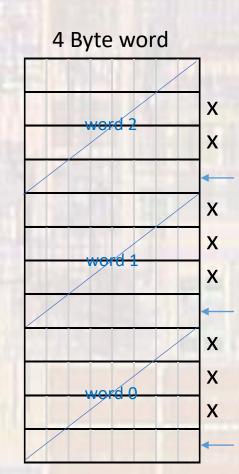
9

- Integrated Circuit Memory
 - Read
 - Provide Address
 - Read (addr 4) → 11101000
 - Read (addr 6) → 00000101
 - Read (addr 8) → ???????
 - NOTE: Reading does not destroy the data Addr 3


1.16	0	0		0	0		1	1
	1	1	1	0	1	0	0	0
ET LO	0	0	0	1	1	1	0	1
	1	1	0	0	1	0	1	0
1.1.1.10	0	1	1	1	1	0	1	1
	0	0	0	1	0	0	0	1
222 11-12-1	0	0	0	1	1	1	0	1
- CV FC	0	0	0	0	0	1	0	1
	1	0	1	1	0	1	0	0
e data	1	1	1	0	1	0	0	0
Addr 3	1	0	0	1	0	1	1	1
Addr 2	1	1	0	1	1	1	0	1
Addr 1	1	1	0	1	0	1	0	0
Addr 0	1	0	1	0	1	0	0	1


- Integrated Circuit Memory
 - Addresses
 - Addresses are NOT part of the memory array
 - Addresses are logic circuits to choose which part of the array to read from or write to – decoders determine the location


	0	0	1	0	0	1	1	1
	1	1	1	0	1	0	0	0
	0	0	0	1	1	1	0	1
	1	1	0	0	1	0	1	0
	0	1	1	1	1	0	1	1
	0	0	0	1	0	0	0	1
	0	0	0	1	1	1	0	1
	0	0	0	0	0	1	0	1
	1	0	1	1	0	1	0	0
	1	1	1	0	1	0	0	0
Addr 3	1	0	0	1	0	1	1	1
Addr 2	1	1	0	1	1	1	0	1
Addr 1	1	1	0	1	0	1	0	0
Addr 0	1	0	1	0	1	0	0	1


- Integrated Circuit Memory
 - Word Alignment
 - Processors work with data WORDS
 - Size of the internal registers
 - 1 Byte 8 bit processor
 - 2 Bytes 16 bit processor
 - 4 Bytes 32 bit processor
 - 8 Bytes 64 bit processor
 - Memory is word aligned
 - Must access the entire word
 - Not allowed/possible to access inside a word*
 - * exceptions exist

- Integrated Circuit Memory
 - Word Alignment
 - Allowed addresses indicated by

ELE 1601

- Integrated Circuit Memory
 - Big-Endian vs Little-Endian the order words > 1B are stored in memory
 - data value 01110111 10111011 11011101 01110111 in a 4 byte word
 Big Endian

ELE 1601

Stored in lowest memory

Least significant byte

Х

X

Х

Χ

Χ

Х

Х

Х