Last updated 6/16/23

These slides show program execution flow using functions



ELE 1601

* Functions and Memory -
program memory

e Function call transfers execution
to a separate section of code
(function)

* When done, the function returns
to the next line of the calling
function code

* Multiple calls to the same
function transfer execution to the
same location

* Only one copy of the function in
program memory

Executing

. 4 —_—p
instructions——
4 A —_—
in line

Program Memory

Copy of RAM
Data section

Read Only - Data

Return

Function Code

>Function Call

Exception Vectors

Ot



* Functions and Memory —

data memory

* Function call creates a space in the stack
e Called a Stack Frame

* Function operates in this newly created
space (scope)

* When the function returns, the space is
reclaimed (not necessarily erased but no
longer available)

ELE 1601 3

Data Memory

Function memory
Copy of parameters
Local variables

© tj



ELE 1601

* Functions and Memory —
data memory — Stack Frame

» Storage order — system dependent

Arguments passed to the function
* Inthe order they are declared in the function call.

Return address
* The address of the next instruction after the function call

Frame pointer
* Pointer to the current stack frame
e Can be stored on the stack or in a special register

Local function variables

* Removal order

Reverse of the storage order

The return value can be stored on the stack or in a
special register in the processor

Data Memory

Stack

Function memory
Copy of parameters
Local variables

Data

© tj



declaration float ave(float vall, float val2);
_ ?2>4.4 Average
L 5.5 tryl
int main(void){ 3.3 try2
float average; 5.5 vall B
) Relinquished after Val2
float try1; Function return ave . =3 X 2 Instruction after call
float try2; (not erased) next instruction loc at assembly level
?2>4.4 tmp_val
// enter try1, try2 l
average = ave(try1l, try2);
call N
0 When the function returns it:
return O; - Returns the return value
} - Sets the PC to the location stored when
the function was called
dEfiHitiOﬂ float ave(float vall, float val2){ - Reclaims the functions memory locations
float tmp_val; Bss
tmp_val = (vall + val2)/2;
return tmp_val;
} Data
ELE 1601 5

© tj



	Slide 1: Non-Linear Program Execution - Functions
	Slide 2: Non-Linear Program Execution - Functions
	Slide 3: Non-Linear Program Execution - Functions
	Slide 4: Non-Linear Program Execution - Functions
	Slide 5: Non-Linear Program Execution - Functions

