
Non-Linear Program
Execution - Functions

Last updated 6/16/23

These slides show program execution flow using functions

2 © tjELE 1601

Non-Linear Program Execution - Functions

• Functions and Memory -
program memory

• Function call transfers execution
to a separate section of code
(function)

• When done, the function returns
to the next line of the calling
function code

• Multiple calls to the same
function transfer execution to the
same location
• Only one copy of the function in

program memory

Program Memory

Executing
instructions
in line

Function Call

Function Code

Return

Read Only - Data

Copy of RAM
Data section

Exception Vectors

3 © tjELE 1601

Non-Linear Program Execution - Functions

• Functions and Memory –

 data memory

• Function call creates a space in the stack
• Called a Stack Frame

• Function operates in this newly created
space (scope)

• When the function returns, the space is
reclaimed (not necessarily erased but no
longer available)

Data Memory

Heap

Bss

Data

Stack

Function memory
 Copy of parameters
 Local variables

4 © tjELE 1601

Non-Linear Program Execution - Functions

• Functions and Memory –

 data memory – Stack Frame

• Storage order – system dependent
• Arguments passed to the function

• In the order they are declared in the function call.

• Return address
• The address of the next instruction after the function call

• Frame pointer
• Pointer to the current stack frame
• Can be stored on the stack or in a special register

• Local function variables

• Removal order
• Reverse of the storage order
• The return value can be stored on the stack or in a

special register in the processor

Data Memory

Heap

Bss

Data

Stack

Function memory
 Copy of parameters
 Local variables

5 © tjELE 1601

Non-Linear Program Execution - Functions

• User Defined Functions – Data memory

float ave(float val1, float val2);
…

int main(void){
 float average;
 float try1;
 float try2;

 // enter try1, try2
 …
 average = ave(try1, try2);
 …
 return 0;
}

float ave(float val1, float val2){
 float tmp_val;
 tmp_val = (val1 + val2)/2;
 return tmp_val;
}

declaration

call

definition

val1
Val2

tmp_val

Data Memory

Heap

Bss

Data

Stack

Average
try1
try2

? → 4.4
5.5
3.3

main

ave Instruction after call
at assembly level

Relinquished after
Function return
(not erased)

copies
5.5
3.3

next instruction loc
? → 4.4

When the function returns it:
- Returns the return value
- Sets the PC to the location stored when

the function was called
- Reclaims the functions memory locations

	Slide 1: Non-Linear Program Execution - Functions
	Slide 2: Non-Linear Program Execution - Functions
	Slide 3: Non-Linear Program Execution - Functions
	Slide 4: Non-Linear Program Execution - Functions
	Slide 5: Non-Linear Program Execution - Functions

