
Precedence

Last updated 6/16/23

These slides introduce precedence in C

2 © tjELE 1601

Precedence

• Precedence

• Order in which operators are evaluated
• In math: * and / before + and –

• 2/3+3*4 → ((2/3) + (3*4))

• Associativity

• Order in which operators with the same precedence are
evaluated
• In math: left to right

• 2 + 3 – 4 + 5 → (((2 + 3) – 4) + 5)

3 © tjELE 1601

Precedence

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional Right-to-Left

14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

C Precedence Chart

4 © tjELE 1601

Precedence

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional Right-to-Left

14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

* & and () have multiple definitions
Usage is context dependent

C Precedence

5 © tjELE 1601

Precedence

• Examples (ints)

a = 2, b=3, c=4

1 + 2 * 3 →

1 + 2 * 3 / 2 →

-b++ →

a += b *= c -= 3 →

--a * (1 + b) / 3 – c++ * b →

6 © tjELE 1601

Precedence

• Examples

a = 2, b=3, c=4

1 + 2 * 3 → 1 + (2 * 3) = 7

1 + 2 * 3 / 2 → 1 + ((2 *3) /2) = 1 + (6/2) = 4
same precedence (L-R)

-b++ → -(b++) = -3 evaluates first - (b is now 4)

a += b *= c -= 3 → c= 1, b=3, a=5 same precedence (R-L)

--a * (1 + b) / 3 – c++ * b → --a * (1 + b) / 3 – c++ * b
--a * 4 / 3 – c++ * b
--a * 4 / 3 – 4 * b
1 * 4 / 3 – 4 * b
4 / 3 – 4 *3
1 - 12
-11

7 © tjELE 1601

Precedence

• Precedence and Associativity

• For clarity and precision

• Use Parenthesis freely

(((--a) * (1 + b))/ 3) – ((c++) * b) →

(((1) * (4)) / 3) – ((4) * 3)

((4 / 3) – (12))

(1 – 12)

-11

a = 2, b=3, c=4

	Slide 1: Precedence
	Slide 2: Precedence
	Slide 3: Precedence
	Slide 4: Precedence
	Slide 5: Precedence
	Slide 6: Precedence
	Slide 7: Precedence

