Last updated 6/25/24

These slides show an example of linear program flow

* Processor Architecture
e Harvard — separate Instruction and Data memory paths

INSTRUCTION
MEMORY

|
|
|
ud13onJisu
|
|
|
|
|
|
|
|
|
|
|
|

Control

REGISTERS

CPU

ELE 1601 2 © tj

ELE 1601

* RISC Instruction set

e 2 basic types of instructions
* Register based instructions
* Memory instructions

* Register Instructions

* Only allow access to the internal registers
e Arithmetic
e Logical
e Control

* Memory Operations
* Read or write to memory/registers

© tj

* I[nstruction Execution

* These steps happen in hardware — we do not control them
directly

depend
on
instruction

ELE 1601

Fetch
Decode
[Execute
Load
Store

Mem

| Write Back

get next instruction from instruction memory
determine what the instruction is

if necessary — do what the instruction requires
if necessary — get value from data memory

if necessary — place value in data memory

if necessary — store result in register

4 © tj

ELE 1601

* [nstruction Sequencing

e Program Counter (PC)

e Register that holds the NEXT instruction memory location to be
fetched

* Provides the address for the instruction memory read

* Typically the register is incremented each clock cycle
* Incremented by the size of an instruction
e e.g.for a 16 bit instruction word the PC would be incremented by 2
* 0x1234 to 0x1236 since each instruction uses up 2 bytes

Ot

* [nstruction Sequencing

* Program control

e Linear flow —increment PC normally

ELE 1601 6 © tj

ELE 1601

* 1 line of code - complete

1000
1002
1004
1006
1008
100A
100C

Z=X+tY,
The compiler turned the single line into 7 instructions

em oc | nstrucion | Encoding_acton

Idi RA, 12
|d RA, RB
Idi RA, 16
|d RA, RC
add RB, RC, RD
Idi RA, 20
st RA, RD

0xCO0C
0x8040
0xCO010
0x8080
0x46CO0
0xC014
0x9300

The compiler has assigned
x to memory location 0x0C
y to memory location 0x10
z to memory location 0x14

Load loc for x into RA

Put value at loc for x in RB id rs, mem(ra)
Load loc for y into RA

Put value at loc for y in RC 1drc, mem(ra)
RD <-RB +RC

Load loc for z into RA

Put value of RD into loc for z st mem(ra), rRD

© tj

e Simplified Block Diagram

Bus(inst)

Data
MEMORY

Instruction
MEMORY

ET G EELS

Registers

ELE 1601 8 ©tj

e Status

* Data locations filled by previous commands
e PC currently pointing to Instruction memory location 1000

e B Bl

Data
MEMORY

Control

Instruction
??

?? Registers
??
??

Peripherals

MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040

ELE 1601 0xC00C 9 © tj

* First Instruction (fetch)

Control puts a memory location (1000)
on the address bus along with a read signal
Instruction memory returns the value at that location (OxCOO0C)

b

Instruction

??
i Registers MEMORY
??
??

0x9300

Control
=
Data .
MEMORY Peripherals
0xC014 ?7?
0x46C0

0x8080 9
0xC010 5
0x8040

ELE 1601 L2738 Oxcooc 10 Ot

??
??
??
??

ELE 1601

e First Instruction (decode)

Control decodes the word returned by the
memory and prepares to execute a pre-defined
sequence of events | 0xCO0C = Idi RA, 12

o S Gl

Instruction Data Peribherals
Registers MEMORY MEMORY P
0x9300
0xC014 ?7?
or080 9
5

0xC010
PC ——» 0x8040

Control

* First Instruction (execute)

Does nothing for this instruction

0xCO0C = Idi RA, 12

o S Gl

- Instruction Data Peripherals
? Registers MEMORY MEMORY
??
?? 0x9300

0xC014 ?7?

0x46C0

0x8080 9

5

0xC010
P =——> 0x8040

ELE 1601 e e 12 © tj

Control

??
??
??
??

ELE 1601

e First Instruction (mem)

Control

Registers

ey

Does nothing for this instruction

Instruction

MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

0xCOO0C -> Idi RA, 12

Bus (data - 1/0)

o S Gl

LEIE Peripherals
MEMORY P
??
9
5

13 Ot

12
??
??
??

ELE 1601

* First Instruction (write back)

CPU writes the value(4000) back into a
register(RA)

0xCOO0C =2 Idi RA, 12

e M G

Instruction Data Peribherals
Registers MEMORY MEMORY P
0x9300
0xC014 ?7?
02080 9
5

0xC010
POyt 0x8040
0xCooC 14 O t]

Control

12

B2
2%

ELE 1601

* New Fetch

Control o

Bus(inst)

(IxS040

read

Instruction
Registers MEMORY

ey

A

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Writeback: stores value in RB (5)

Fetch: -> 1002 < 0x8040

Decode: 0x8040 - Id RA, RB RB €< mem(RA)

Execute: idle
MEM: value at location in RA(12) = (5)

Bus (data - 1/0)

read

Data

MEMORY Peripherals

15

© t]

16

??
??

ELE 1601

* New Fetch

Control

Registers

PCE S—>

Bus(inst)

Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch: - 1004 < 0xC010
Decode: 0xCO010 - Idi RA, 16
Execute: idle

MEM: idle

Writeback: stores value in RA (16)

1 1

Data

MEMORY Peripherals

16 Ot

* New Fetch

Control

U

Registers

(Vo)

PEae—=—>

ELE 1601

0[0]¢

Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch:

Decode: 0x8080 - Id RA, RC RC € mem(RA)

-> 1006 < 0x8080

Execute: idle

MEM:

Writeback: stores value in RC (9)

value at location in RA(16) = (9)

Bus (data - 1/0)

Bus(inst) 9
3030
read
ALU read

17

MEMORY

bata Peripherals

© t]

ELE 1601

* New Fetch

Control

Registers

R

Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch: - 1008 < 0x46C0
Decode: 0x46C0 - add RB, RC, RD
Execute: adds RB+RC - 14
MEM: idle

Writeback: stores value in RD (14)

Bus (data - 1/0)

Data
MEMORY

18

© t]

* New Fetch Fetch: - 100A € 0xC014
Decode: 0xC014 - Idi RA, 20
Execute: idle

MEM: idle

Writeback: stores value in RA (20)

Bus (data - 1/0)
Control

L Bus(inst,

0xC014 ‘

- Instruction Data

5 Registers MEMORY MEMORY
9

14

0x9300
PIC ———— 0xC014
0x46C0
0x8080
0xC010
0x8040

ELE 1601 0xC00C 19 © tj

* New Fetch Fetch: - 100C € 0x9300

Decode: 0x9300 - st RA, RD mem(RA) €< RD
Execute: idle

MEM: RD(14) - location in RA(20)

Writeback: idle

Bus (data - I/0)

Control
NOC
Bus(inst) 14
0xS80C

write

reac

Instruction Data

T EELS
Registers MEMORY MEMORY P

O U

PCES 2 0x9300

0xC014 14
0x46C0

0x8080 9
0xC010 5

0x8040
ELE 1601 0xC00C 20 © tj

* Timing and memory

1000

1002

Z=X+y' <:> 1004
4 1006

1008

100A
100C

* 1 line of code = 6 instructions

* 6 Instruction memory words

* 1 line of code = 6 clock cycles

Idi RA, 12
Id RA, RB
Idi RA, 16
Id RA, RC
add RB, RC, RD
Idi RA, 20
st RA, RD

0xC00C
0x8040
0xC010
0x8080
0x46C0
0xC014
0x9300

Load loc for x into RA

Put value at loc for x in RB 1drs, mem(ra)
Load loc for y into RA

Put value at loc for y in RC 14 ¢, mem(ra)
RD <- RB+RC

Load loc for z into RA

Put value of RD into loc for z <t mem(ra), R0

* Lines of code and clock cycles are not easily correlated

ELE 1601 21

© tj

	Slide 1: Linear Program Execution Example
	Slide 2: Linear Program Execution
	Slide 3: Linear Program Execution
	Slide 4: Linear Program Execution
	Slide 5: Linear Program Execution
	Slide 6: Linear Program Execution
	Slide 7: Linear Program Execution
	Slide 8: Linear Program Execution
	Slide 9: Linear Program Execution
	Slide 10: Linear Program Execution
	Slide 11: Linear Program Execution
	Slide 12: Linear Program Execution
	Slide 13: Linear Program Execution
	Slide 14: Linear Program Execution
	Slide 15: Linear Program Execution
	Slide 16: Linear Program Execution
	Slide 17: Linear Program Execution
	Slide 18: Linear Program Execution
	Slide 19: Linear Program Execution
	Slide 20: Linear Program Execution
	Slide 21: Linear Program Execution

