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These slides show an example of linear program flow



* Processor Architecture
e Harvard — separate Instruction and Data memory paths
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* RISC Instruction set

e 2 basic types of instructions
* Register based instructions
* Memory instructions

* Register Instructions

* Only allow access to the internal registers
e Arithmetic
e Logical
e Control

* Memory Operations
* Read or write to memory/registers
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* I[nstruction Execution

* These steps happen in hardware — we do not control them
directly

depend
on
instruction
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Fetch
Decode
[ Execute
Load
Store

Mem

| Write Back

get next instruction from instruction memory
determine what the instruction is

if necessary — do what the instruction requires
if necessary — get value from data memory

if necessary — place value in data memory

if necessary — store result in register
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* [nstruction Sequencing

e Program Counter (PC)

e Register that holds the NEXT instruction memory location to be
fetched

* Provides the address for the instruction memory read

* Typically the register is incremented each clock cycle
* Incremented by the size of an instruction
e e.g.for a 16 bit instruction word the PC would be incremented by 2
* 0x1234 to 0x1236 since each instruction uses up 2 bytes
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* [nstruction Sequencing

* Program control

e Linear flow —increment PC normally
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* 1 line of code - complete

1000
1002
1004
1006
1008
100A
100C

Z=X+tY,
The compiler turned the single line into 7 instructions

em oc | nstrucion | Encoding_acton

Idi RA, 12
|d RA, RB
Idi RA, 16
|d RA, RC
add RB, RC, RD
Idi RA, 20
st RA, RD

0xCO0C
0x8040
0xCO010
0x8080
0x46CO0
0xC014
0x9300

The compiler has assigned
x to memory location 0x0C
y to memory location 0x10
z to memory location 0x14

Load loc for x into RA

Put value at loc for x in RB id rs, mem(ra)
Load loc for y into RA

Put value at loc for y in RC 1drc, mem(ra)
RD <-RB +RC

Load loc for z into RA

Put value of RD into loc for z st mem(ra), rRD
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e Simplified Block Diagram
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e Status

* Data locations filled by previous commands
e PC currently pointing to Instruction memory location 1000

e B Bl
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* First Instruction (fetch)

Control puts a memory location (1000)
on the address bus along with a read signal
Instruction memory returns the value at that location (OxCOO0C)
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Instruction
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i Registers MEMORY
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Control
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MEMORY Peripherals
0xC014 ?7?
0x46C0

0x8080 9
0xC010 5
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e First Instruction (decode)

Control decodes the word returned by the
memory and prepares to execute a pre-defined
sequence of events | 0xCO0C = Idi RA, 12
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* First Instruction (execute)

Does nothing for this instruction

0xCO0C = Idi RA, 12

o S Gl

- Instruction Data Peripherals
? Registers MEMORY MEMORY
??
?? 0x9300

0xC014 ?7?

0x46C0

0x8080 9

5

0xC010
P =——> 0x8040
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e First Instruction (mem)

Control

Registers

ey

Does nothing for this instruction

Instruction

MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

0xCOO0C -> Idi RA, 12

Bus (data - 1/0)
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* First Instruction (write back)

CPU writes the value(4000) back into a
register(RA)

0xCOO0C =2 Idi RA, 12

e M G
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* New Fetch

Control o

Bus(inst)

(IxS040

read

Instruction
Registers MEMORY

ey

A

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Writeback: stores value in RB (5)

Fetch: -> 1002 < 0x8040

Decode: 0x8040 - Id RA, RB RB €< mem(RA)

Execute: idle
MEM: value at location in RA(12) = (5)

Bus (data - 1/0)

read

Data

MEMORY Peripherals
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* New Fetch

Control

Registers

PCE S—>

Bus(inst)

Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch: - 1004 < 0xC010
Decode: 0xCO010 - Idi RA, 16
Execute: idle

MEM: idle

Writeback: stores value in RA (16)
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* New Fetch

Control

U

Registers
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Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch:

Decode: 0x8080 - Id RA, RC RC € mem(RA)

-> 1006 < 0x8080

Execute: idle

MEM:

Writeback: stores value in RC (9)

value at location in RA(16) = (9)

Bus (data - 1/0)

Bus(inst) 9
3030
read
ALU read

17
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* New Fetch

Control

Registers

R

Instruction
MEMORY

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xCooC

Fetch: - 1008 < 0x46C0
Decode: 0x46C0 - add RB, RC, RD
Execute: adds RB+RC - 14
MEM: idle

Writeback: stores value in RD (14)

Bus (data - 1/0)

Data
MEMORY
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* New Fetch Fetch: - 100A € 0xC014
Decode: 0xC014 - Idi RA, 20
Execute: idle

MEM: idle

Writeback: stores value in RA (20)

Bus (data - 1/0)
Control

L Bus(inst,

0xC014 ‘

- Instruction Data

5 Registers MEMORY MEMORY
9

14

0x9300
PIC ———— 0xC014
0x46C0
0x8080
0xC010
0x8040
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* New Fetch Fetch: - 100C € 0x9300

Decode: 0x9300 - st RA, RD mem(RA) €< RD
Execute: idle

MEM: RD(14) - location in RA(20)

Writeback: idle

Bus (data - I/0)

Control
NOC
Bus(inst) 14
0xS80C

write

reac

Instruction Data

T EELS
Registers MEMORY MEMORY P

O U

PCES 2 0x9300

0xC014 14
0x46C0

0x8080 9
0xC010 5

0x8040
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* Timing and memory

1000

1002

Z=X+y' <:> 1004
4 1006

1008

100A
100C

* 1 line of code = 6 instructions

* 6 Instruction memory words

* 1 line of code = 6 clock cycles

Idi RA, 12
Id RA, RB
Idi RA, 16
Id RA, RC
add RB, RC, RD
Idi RA, 20
st RA, RD

0xC00C
0x8040
0xC010
0x8080
0x46C0
0xC014
0x9300

Load loc for x into RA

Put value at loc for x in RB 1drs, mem(ra)
Load loc for y into RA

Put value at loc for y in RC 14 ¢, mem(ra)
RD <- RB+RC

Load loc for z into RA

Put value of RD into loc for z <t mem(ra), R0

* Lines of code and clock cycles are not easily correlated
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