
Linear Program Execution 
Example

Last updated 6/25/24

These slides show an example of linear program flow



2 © tjELE 1601

Linear Program Execution

• Processor Architecture
• Harvard – separate Instruction and Data memory paths

INSTRUCTION
MEMORY

DATA
MEMORY

Control
ALU

Arithmetic
Logic Unit

REGISTERS

ad
d

re
ss

d
ata

in
stru

ctio
n

ad
d

ress

CPU
Central Processing Unit



3 © tjELE 1601

Linear Program Execution

• RISC Instruction set

• 2 basic types of instructions
• Register based instructions

• Memory instructions

• Register Instructions
• Only allow access to the internal registers
• Arithmetic

• Logical

• Control

• Memory Operations
• Read or write to memory/registers



4 © tjELE 1601

Linear Program Execution

• Instruction Execution
• These steps happen in hardware – we do not control them 

directly

 Fetch  get next instruction from instruction memory

 Decode  determine what the instruction is

 Execute  if necessary – do what the instruction requires   

 Load  if necessary – get value from data memory

 Store  if necessary – place value in data memory

 Write Back if necessary – store result in register

Mem
depend

on
instruction



5 © tjELE 1601

Linear Program Execution

• Instruction Sequencing

• Program Counter (PC)

• Register that holds the NEXT instruction memory location to be 
fetched

• Provides the address for the instruction memory read

• Typically the register is incremented each clock cycle
• Incremented by the size of an instruction

• e.g. for a 16 bit instruction word the PC would be incremented by 2

• 0x1234 to 0x1236 since each instruction uses up 2 bytes



6 © tjELE 1601

Linear Program Execution

• Instruction Sequencing

• Program control

• Linear flow – increment PC normally



7 © tjELE 1601

Linear Program Execution

• 1 line of code - complete

  z = x + y;
The compiler turned the single line into 7 instructions

The compiler has assigned
 x to memory location 0x0C
 y to memory location 0x10
 z to memory location 0x14

Mem loc Instruction Encoding action

1000 ldi RA, 12 0xC00C Load loc for x into RA

1002 ld RA, RB 0x8040 Put value at loc for x in RB  ld RB, mem(RA)

1004 ldi RA, 16 0xC010 Load loc for y into RA

1006 ld RA, RC 0x8080 Put value at loc for y in RC  ld RC, mem(RA)

1008 add RB, RC, RD 0x46C0 RD <- RB + RC

100A ldi RA, 20 0xC014 Load loc for z into RA

100C st RA, RD 0x9300 Put value of RD into loc for z st mem(RA), RD



8 © tjELE 1601

Linear Program Execution

• Simplified Block Diagram

Instruction

MEMORY Peripherals
Data

MEMORY

Bus (data - I/O)

Bus(inst)

CPU

Control

ALU

Registers



9 © tjELE 1601

Linear Program Execution

• Status
• Data locations filled by previous commands

• PC currently pointing to Instruction memory location 1000

Peripherals

CPU

Control

ALU

Registers

Instruction

MEMORY
Data

MEMORY

??
9
5

RA  ??
RB  ??
RC  ??
RD  ??

Bus (data - I/O)

Bus(inst)

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



10 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• First Instruction (fetch)

Peripherals

CPU

Control

ALU

Registers

Control puts a memory location (1000)
on the address bus along with a read signal
Instruction memory returns the value at that location (0xC00C)

1000

read

Instruction

MEMORY
Data

MEMORY
RA  ??
RB  ??
RC  ??
RD  ??

0xC00C

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000

0x14
0x10
0x0C



11 © tjELE 1601

Linear Program Execution

• First Instruction (decode)

Peripherals

CPU

Control

ALU

Registers

Instruction

MEMORY
Data

MEMORY
RA  ??
RB  ??
RC  ??
RD  ??

Control decodes the word returned by the 
memory and prepares to execute a pre-defined 
sequence of events 0xC00C → ldi RA, 12

Bus (data - I/O)

Bus(inst)

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



12 © tjELE 1601

Linear Program Execution

• First Instruction (execute)

Peripherals

CPU

Control

ALU

Registers

Instruction

MEMORY
Data

MEMORY
RA  ??
RB  ??
RC  ??
RD  ??

Does nothing for this instruction

0xC00C → ldi RA, 12

Bus (data - I/O)

Bus(inst)

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



13 © tjELE 1601

Linear Program Execution

• First Instruction (mem)

Peripherals

CPU

Control

ALU

Registers

Instruction

MEMORY
Data

MEMORY
RA  ??
RB  ??
RC  ??
RD  ??

Does nothing for this instruction

0xC00C → ldi RA, 12

Bus (data - I/O)

Bus(inst)

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



14 © tjELE 1601

Linear Program Execution

• First Instruction (write back)

Peripherals

CPU

Control

ALU

Registers

Instruction

MEMORY
Data

MEMORY
RA  12
RB  ??
RC  ??
RD  ??

CPU writes the value(4000) back into a 
register(RA)

0xC00C → ldi RA, 12

Bus (data - I/O)

Bus(inst)

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



15 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 1002  0x8040
Decode:   0x8040 → ld RA, RB        RB  mem(RA)
Execute:   idle
MEM:   value at location in RA(12) = (5)
Writeback:  stores value in RB (5)

1002

read

Instruction

MEMORY
Data

MEMORY
RA  12
RB  5
RC  ??
RD  ??

0x8040

0x0C

read

5

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



16 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 1004  0xC010
Decode:   0xC010 → ldi RA, 16
Execute:   idle
MEM:   idle
Writeback:  stores value in RA (16)

1004

read

Instruction

MEMORY
Data

MEMORY
RA  16
RB  5
RC  ??
RD  ??

0xC010

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



17 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 1006  0x8080
Decode:   0x8080 → ld RA, RC        RC  mem(RA)
Execute:   idle
MEM:   value at location in RA(16) = (9)
Writeback:  stores value in RC (9)

1006

read

Instruction

MEMORY
Data

MEMORY
RA  16
RB  5
RC 9
RD  ??

0x8080

0x10

read

9

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



18 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 1008  0x46C0
Decode:  0x46C0 → add RB, RC, RD
Execute:   adds RB + RC → 14
MEM:   idle
Writeback:  stores value in RD (14)

1008

read

Instruction

MEMORY
Data

MEMORY
RA  16
RB  5
RC 9
RD  14

0x46C0

14

PC
??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



19 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 100A  0xC014
Decode:   0xC014 → ldi RA, 20
Execute:   idle
MEM:   idle
Writeback:  stores value in RA (20)

100A

read

Instruction

MEMORY
Data

MEMORY
RA  20
RB  5
RC  9
RD  14

0xC014

PC ??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



20 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch

Peripherals

CPU

Control

ALU

Registers

Fetch:   → 100C  0x9300
Decode:   0x9300 → st RA, RD         mem(RA)  RD
Execute:   idle
MEM:   RD(14) → location in RA(20)
Writeback:  idle

100C

read

Instruction

MEMORY
Data

MEMORY
RA  20
RB  5
RC 9
RD  14

0x9300

0x14

write

14

PC
14
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



21 © tjELE 1601

Linear Program Execution

• Timing and memory
 

 z = x + y;

• 1 line of code → 6 instructions
• 6 Instruction memory words

• 1 line of code → 6 clock cycles
• Lines of code and clock cycles are not easily correlated


	Slide 1: Linear Program Execution Example
	Slide 2: Linear Program Execution
	Slide 3: Linear Program Execution
	Slide 4: Linear Program Execution
	Slide 5: Linear Program Execution
	Slide 6: Linear Program Execution
	Slide 7: Linear Program Execution
	Slide 8: Linear Program Execution
	Slide 9: Linear Program Execution
	Slide 10: Linear Program Execution
	Slide 11: Linear Program Execution
	Slide 12: Linear Program Execution
	Slide 13: Linear Program Execution
	Slide 14: Linear Program Execution
	Slide 15: Linear Program Execution
	Slide 16: Linear Program Execution
	Slide 17: Linear Program Execution
	Slide 18: Linear Program Execution
	Slide 19: Linear Program Execution
	Slide 20: Linear Program Execution
	Slide 21: Linear Program Execution

