
Linear Program Execution 
Example

Last updated 6/25/24

These slides show an example of linear program flow
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Linear Program Execution

• Processor Architecture
• Harvard – separate Instruction and Data memory paths
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Linear Program Execution

• RISC Instruction set

• 2 basic types of instructions
• Register based instructions

• Memory instructions

• Register Instructions
• Only allow access to the internal registers
• Arithmetic

• Logical

• Control

• Memory Operations
• Read or write to memory/registers
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Linear Program Execution

• Instruction Execution
• These steps happen in hardware – we do not control them 

directly

 Fetch  get next instruction from instruction memory

 Decode  determine what the instruction is

 Execute  if necessary – do what the instruction requires   

 Load  if necessary – get value from data memory

 Store  if necessary – place value in data memory

 Write Back if necessary – store result in register

Mem
depend

on
instruction
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Linear Program Execution

• Instruction Sequencing

• Program Counter (PC)

• Register that holds the NEXT instruction memory location to be 
fetched

• Provides the address for the instruction memory read

• Typically the register is incremented each clock cycle
• Incremented by the size of an instruction

• e.g. for a 16 bit instruction word the PC would be incremented by 2

• 0x1234 to 0x1236 since each instruction uses up 2 bytes
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Linear Program Execution

• Instruction Sequencing

• Program control

• Linear flow – increment PC normally
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Linear Program Execution

• 1 line of code - complete

  z = x + y;
The compiler turned the single line into 7 instructions

The compiler has assigned
 x to memory location 0x0C
 y to memory location 0x10
 z to memory location 0x14

Mem loc Instruction Encoding action

1000 ldi RA, 12 0xC00C Load loc for x into RA

1002 ld RA, RB 0x8040 Put value at loc for x in RB  ld RB, mem(RA)

1004 ldi RA, 16 0xC010 Load loc for y into RA

1006 ld RA, RC 0x8080 Put value at loc for y in RC  ld RC, mem(RA)

1008 add RB, RC, RD 0x46C0 RD <- RB + RC

100A ldi RA, 20 0xC014 Load loc for z into RA

100C st RA, RD 0x9300 Put value of RD into loc for z st mem(RA), RD
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Linear Program Execution

• Simplified Block Diagram
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Linear Program Execution

• Status
• Data locations filled by previous commands

• PC currently pointing to Instruction memory location 1000
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Bus (data - I/O)

Bus(inst)

Linear Program Execution

• First Instruction (fetch)
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Linear Program Execution

• First Instruction (decode)
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Linear Program Execution

• First Instruction (execute)
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Linear Program Execution

• First Instruction (mem)
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Linear Program Execution

• First Instruction (write back)
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Linear Program Execution

• New Fetch
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Fetch:   → 1002  0x8040
Decode:   0x8040 → ld RA, RB        RB  mem(RA)
Execute:   idle
MEM:   value at location in RA(12) = (5)
Writeback:  stores value in RB (5)

1002

read

Instruction

MEMORY
Data

MEMORY
RA  12
RB  5
RC  ??
RD  ??

0x8040

0x0C

read

5

PC

??
9
5

0x9300
0xC014
0x46C0
0x8080
0xC010
0x8040
0xC00C

0x14
0x10
0x0C

0x100C
0x100A
0x1008
0x1006
0x1004
0x1002
0x1000



16 © tjELE 1601

Bus (data - I/O)

Bus(inst)

Linear Program Execution

• New Fetch
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Execute:   idle
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Linear Program Execution

• New Fetch
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Execute:   idle
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Writeback:  stores value in RC (9)
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Linear Program Execution

• New Fetch
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Linear Program Execution

• New Fetch
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Linear Program Execution

• New Fetch
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Linear Program Execution

• Timing and memory
 

 z = x + y;

• 1 line of code → 6 instructions
• 6 Instruction memory words

• 1 line of code → 6 clock cycles
• Lines of code and clock cycles are not easily correlated
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