Programming Logic

Last updated 6/16/23

These slides introduce logic concepts used in programming

Programming Logic

- Programming Logic
- Defining the value of an expression or operand as True or False
- In the programming world only $0(0.0)$ is False
- In the programming world any value but 0 is True

Programming Logic

- Logic in C

- Logic Expression
- Operation Operand \rightarrow T or F
- Operand Operation Operand \rightarrow T or F
- Operations
- NOT - flips the evaluation of the operand
- OR - evaluates as True if either operand is true (including both)
- AND - evaluates as True if both operands are true

Programming Logic

- Logical NOT - flips the evaluation of the operand
- T \rightarrow F or $\mathrm{F} \rightarrow$ T
- ! operand

Logical NOT

$$
\begin{array}{lll}
\mathrm{A}=\mathrm{T} & & \\
\mathrm{~B}=\mathrm{F} & & \\
& & \\
\text { ! } \mathrm{A} & \rightarrow & \mathrm{~F} \\
\text { ! } \mathrm{B} & \rightarrow & \mathrm{~T} \\
\text { ! (! }) & \rightarrow & \mathrm{T}
\end{array}
$$

Logical NOT	
A	! A
F	T
T	F

Programming Logic

- Logical OR - evaluates as T if either operand is T - op1 || op2

$A=T$		
$B=F$		
$C=T$		
$A \\| B$	\rightarrow	
$A \\| C$	\rightarrow	
$B \\| C$	\rightarrow	
(!A) \|		

Logical OR			
A	B	A \|	B
F	F	F	
F	T	T	
T	F	T	
T	T	T	

Programming Logic

- Logical AND - evaluates as T if both operands are T
- op1 \&\& op2

$$
\begin{aligned}
& A=T \\
& B=F \\
& C=T
\end{aligned}
$$

$\mathrm{A} \& \& \mathrm{C} \rightarrow \mathrm{T}$
$B \& \& C \quad F$

Logical AND		
A	B	A \&\& B
F	F	F
F	T	F
T	F	F
T	T	T

$(!B) \& \& C \rightarrow \quad T$

Programming Logic

- Evaluating algebraic expressions
- Algebraic expressions can have numeric values AND logical values

	expression \rightarrow		numeric value	logical value
	7	\rightarrow	7	T
if $A=0$	-12.5	\rightarrow	-12.5	T
if $B=1.5, C=3.0$	A $B-C$	\rightarrow	0	F
		\rightarrow	0.0	F

- The numeric values are used in calculations
- The logical values are used in logical operations

Programming Logic

- Evaluating mixed (logical and algebraic) expressions
- Logical values are mapped to algebraic values
- $\mathrm{F} \rightarrow 0$
- $\mathrm{T} \rightarrow 1$

```
A=3
B=0
C=1.5
(!A)+2 詯 
(A | B - 1 0
(A &&C)+C 
((!A)-3)|B T
(A &&C)+(A | B +A -> 5
```

- Additional logical operators - Comparison
- Evaluate expression numerically but provide a logical result

$>$	greater than
$<$	less
$>=$	greater than or equal
$<=$	less than or equal
$==$	equal
$!=$	not equal

Programming Logic

- Additional logical operators - Comparison
- Evaluate expression numerically but provide a logical result

$$
\begin{aligned}
& A=3 \\
& B=0 \\
& C=1.5 \\
& \begin{array}{lll}
A>B & 3>0 & \rightarrow T \\
A<2^{*} C & 3>3 & \rightarrow F \\
B==A-3 & 0==0 & \rightarrow T
\end{array} \\
& A|\mid B!=C \& \& A \\
& \begin{array}{l}
(A|\mid B)!=(C \text { \& } A) \\
(T \text { or } F)!=(T \text { and } T) \\
T \quad!=T
\end{array}
\end{aligned}
$$

