
Recursion

Last updated 6/23/23

These slides introduce basic concepts of recursion



2 © tjELE 1601

Recursion

• Recursion
• Break a problem into smaller and smaller parts until 

solving it is easy

• Typically involves a function calling itself (think nest of 
mirrors)

• Requirements for a function (algorithm) to be recursive
• Base case
• Terminating point

• Easy to solve

• Must progress toward the base case each iteration

• Function (algorithm) calls itself



3 © tjELE 1601

Recursion

• Example – Factorial(n)
• Base case: n = 1

• Progress toward base: 

factorial(n) calls factorial with (n – 1)

int factorial(int n){
// special case
if(n == 0)

return 1;

// base case
else if (n == 1)

return 1;

// movement toward base
// decrement n --> n = 1
else 

return n * factorial(n - 1);

}// end factorial

N = 5

f(5) 
f(5)f(4)
f(5)f(4)f(3)
f(5)f(4)f(3)f(2)
f(5)f(4)f(3)f(2)f(1)
Returns:

1 1
2*1 2

3*2 6
4*6 24

5*24 120



4 © tjELE 1601

Recursion

• Types of Recursion
• Direct
• Function calls itself

• Indirect
• Function calls a second function, that calls the first function

• Head
• The function self-call occurs effectively at the beginning of the 

function

• Tail
• The function self-call occurs at the end of the function

• Body
• The function self-call occurs somewhere other than the beginning 

or end of the function



5 © tjELE 1601

Recursion

• Head Recursion
• The function self-call occurs effectively at the beginning of 

the function
• The ‘work’ is done on the way back up the path

• E.g. factorial()

Fn

Fn

Fn

Fn

Fn

work

work

work

work

void count(int n){
// base case
if(n > 0)

// movement toward base
count(n - 1);

// work done in the return path
printf("%i ", n);

return;
}// end count

1 2 3 4 5



6 © tjELE 1601

Recursion

• Tail Recursion
• The function self-call occurs at the end of the function
• The ‘work’ is done on the way down the path

Fn

Fn

Fn

Fn

Fn

work

work

work

work

work

void count_down(int n){
// base case
if(n > 0){

// work done in the forward path
printf("%i ", n);
// movement toward the base
count_down(n - 1);

}

return;
}// end count_down

5 4 3 2 1



7 © tjELE 1601

Recursion

• Towers of Hanoi
• Move all discs from one tower to another
• Only one disk can be moved at a time.
• Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack i.e. a disk can
only be moved if it is the uppermost disk on a stack.

• No disk may be placed on top of a smaller disk.

Not too bad with
3 discs, but try it
with 7



8 © tjELE 1601

Recursion

• Towers of Hanoi

N = 7

N = 3



9 © tjELE 1601

Recursion

• Sudoku Solver

Level = Medium Level = Evil



10 © tjELE 1601

Recursion

• Caveats
• Recursion can make some problems much easier to solve 

but it can also introduce unnecessary complexity and cost 
(clk cycles and memory)
• Function calls take clock cycles

• Functions use stack space

• Use a for/while loop where possible.


	Slide 1: Recursion
	Slide 2: Recursion
	Slide 3: Recursion
	Slide 4: Recursion
	Slide 5: Recursion
	Slide 6: Recursion
	Slide 7: Recursion
	Slide 8: Recursion
	Slide 9: Recursion
	Slide 10: Recursion

