
Stacks

Last updated 6/23/23

These slides introduce stacks

2 © tjELE 1601

Stacks

• Motivation
• We have seen how useful a stack can be in our overall

computing paradigm
• Allows reuse of limited memory

• Easy to understand

• Can also be used as a Last-In First-out buffer (LIFO)

3 © tjELE 1601

Stack

• Basic Structure
• Each Stack is a structure

Stack

Top

ContentsSettable
(size)

Location of current “top” of the stack
(Next available stored item’s array index)

Array of allocated data memory

Size

4 © tjELE 1601

Stack

• Stack Functions
• Create stack – assign name and size

• Push – add something to the stack

• Pop – remove something from the stack

• Delete stack – deallocate memory

• Stack Empty?

• Stack Full ?

• Empty stack – set top back to 0
• Does not erase anything – just resets the next available spot

5 © tjELE 1601

Stack

• Stack Structure
• Our stack must store a single type of data
• To make it easy to change the data type – create a new type that we

can change in one place

• Our stack structure needs a top, an array, and a size

// use the STK_TYPE to define what type is on the stack
typedef int STK_TYPE; // currently set to int

struct Stack{
STK_TYPE * contents; // pointer to an array
int top;
int size;

};

6 © tjELE 1601

Stack

• Create Stack Note: our stack is a pointer to an allocated memory location

7 © tjELE 1601

Stack

• Push Stack

• Pop Stack

Note: our stack is a pointer to an allocated memory location

8 © tjELE 1601

Stack

• Helper Functions
Note: our stack is a pointer to an allocated memory location

9 © tjELE 1601

Stack

• Example - int

10 © tjELE 1601

Stack

• Example – float
• No changes to stack functions

	Slide 1: Stacks
	Slide 2: Stacks
	Slide 3: Stack
	Slide 4: Stack
	Slide 5: Stack
	Slide 6: Stack
	Slide 7: Stack
	Slide 8: Stack
	Slide 9: Stack
	Slide 10: Stack

