Last updated 6/13/23

These slides introduce unsigned binary number concepts

- Unsigned Binary
 - Binary representation for a number that is ALWAYS positive
 - Memory addresses
 - Counters
 - Populations
 - Often just called "binary"
 - Characterized by n-bits
 - Use a 16 bit unsigned binary number

- Bit Values
 - All *n* bits used to represent the magnitude of the value
 - No negative values

4	\rightarrow	0000	0100
32	\rightarrow	0010	0000
16	\rightarrow	00010000	
50		\rightarrow	?
10010110 _b		\rightarrow	?
0.625	5	\rightarrow	?

3

Convert Decimal to Unsigned Binary

convert 50 decimal to 8 bit unsigned binary

8 bits → bit values of 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1

How many 128s How many 64s How many 32s How many 16s How many 8s How many 4s How many 2s How many 1s $\overrightarrow{} 0$ $\rightarrow 0$ $\rightarrow 1 r 18$ $\rightarrow 1 r 2$ $\rightarrow 0$ $\rightarrow 0$ $\rightarrow 0$ $\rightarrow 1 r 0$ $\rightarrow 0$ $\rightarrow 0$ $\rightarrow 0$ $\rightarrow 0$ $\rightarrow 1 r 0$ $\rightarrow 0 \\
\rightarrow 0$

Convert Unsigned Binary to Decimal

convert 10010110 unsigned binary to decimal

8 bits → bit values of 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1

1*128 + 0*64 + 0*32 + 1*16 + 0*8 + 1*4 + 1*2 + 0*1 128 + 16 + 4 + 2 = 150

 $10010110_{b} \rightarrow 150$

© tj

Convert Fractions to Unsigned Binary

convert 0.625 decimal to unsigned binary

 first few fractional bits → bit values of
 1/2 | 1/4 | 1/8 | 1/16

 0.5
 0.25
 0.125
 0.0625

0.625 How many 1/2s → 1 r 0.125 .1 0.125 How many 1/4s → 0 .10 0.125 How many 1/8s → 1 r 0 .101 0.0 .101

Note: while it is possible to represent fractional numbers in binary, it is rarely done due to its inherent inaccuracy (try 1/3)

- Limits
 - Maximum values: (non fractional)
 - 4 bits (1111) = 15
 - 8 bits (1111 1111) = 255
 - 16 bits (1111 1111 1111 1111) = 65,535

• Wait! 4 bits \rightarrow 2⁴ = 16, why is the maximum value 15

8 bits \rightarrow 2⁸ = 256, why is the maximum value 255

...

• Limits

• Wait! 4 bits \rightarrow 2⁴ = 16, why is the maximum value 15

8 bits \rightarrow 2⁸ = 256, why is the maximum value 255

• Zero is one of our values, that only leaves 15 more ...

decimal

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 1111
 1110
 1101
 100
 1001
 1000
 0111
 0100
 0101
 0100
 0011
 0000
 0000

 unsigned binary