Unsigned Binary

Last updated 6/13/23

These slides introduce unsigned binary number concepts

Unsigned Binary

- Unsigned Binary
- Binary representation for a number that is ALWAYS positive
- Memory addresses
- Counters
- Populations
- Often just called "binary"
- Characterized by n-bits
- Use a 16 bit unsigned binary number

Unsigned Binary

- Bit Values
- All n bits used to represent the magnitude of the value
- No negative values

4	\rightarrow	00000100
32	\rightarrow	00100000
16	\rightarrow	00010000
		\rightarrow

Unsigned Binary

- Convert Decimal to Unsigned Binary
convert 50 decimal to 8 bit unsigned binary
8 bits \rightarrow bit values of $128|64| 32|16| 8|4| 2 \mid 1$

How many 128s
How many 64s How many 32s How many 16s How many 8s How many 4s How many 2s How many 1s

$$
\begin{array}{ll}
\rightarrow 0 & 0 \\
\rightarrow 0 & 00 \\
\rightarrow 1 r 18 & 001 \\
\rightarrow 1 r 2 & 0011 \\
\rightarrow 0 & 00110 \\
\rightarrow 0 & 001100 \\
\rightarrow 1 r 0 & 0011001 \\
\rightarrow 0 & 00110010 \\
\rightarrow 0 & 00110010
\end{array}
$$

Unsigned Binary

- Convert Unsigned Binary to Decimal
convert 10010110 unsigned binary to decimal
8 bits \rightarrow bit values of $128|64| 32|16| 8|4| 2 \mid 1$
$1 * 128+0 * 64+0 * 32+1 * 16+0 * 8+1 * 4+1 * 2+0 * 1$
$128+16+4+2=150$
$10010110_{\mathrm{b}} \rightarrow 150$

Unsigned Binary

- Convert Fractions to Unsigned Binary
convert 0.625 decimal to unsigned binary

first few fractional bits \rightarrow bit values of | $1 / 2$ | $1 / 4$ | $1 / 8$ | $1 / 16$ |
| :---: | :---: | :---: | :---: |
| 0.5 | 0.25 | 0.125 | 0.0625 |

0.625

How many $1 / 2 \mathrm{~s}$
$\rightarrow 1 \mathrm{r} 0.125 \quad .1$
0.125
0.125

How many $1 / 4 \mathrm{~s}$
$\rightarrow 0$
.10
How many $1 / 8 \mathrm{~s} \rightarrow 1 \mathrm{r} 0 \quad .101$
0.0

How many $1 / 4 \mathrm{~s}$	$\rightarrow 0$.10
How many $1 / 8 \mathrm{~s}$	$\rightarrow 1$ ro	.101
		.101

Note: while it is possible to represent fractional numbers in binary, it is rarely done due to its inherent inaccuracy (try 1/3)

Unsigned Binary

- Limits

- Maximum values: (non fractional)
- 4 bits $\quad(1111)=15$
- 8 bits $\quad(11111111)=255$
- 16 bits $(1111111111111111)=65,535$
- 32 bits (1111 111111111111111111111111 1111) = 4,294,967,295
- Wait! 4 bits $\rightarrow 2^{4}=16$, why is the maximum value 15

8 bits $\rightarrow 2^{8}=256$, why is the maximum value 255

Unsigned Binary

- Limits
- Wait! 4 bits $\rightarrow 2^{4}=16$, why is the maximum value 15

8 bits $\rightarrow 2^{8}=256$, why is the maximum value 255

- Zero is one of our values, that only leaves 15 more ...

```
decimal
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 1111 & 1110 & 1101 & 1100 & 1011 & 1010 & 1001 & 1000 & 0111 & 0110 & 0101 & 0100 & 0011 & 0010 & 0001 & 0000 \\
\hline
\end{tabular} unsigned binary
```

