Last updated 2/8/24

- Clock division
 - Normally a clock divider should never be used for internal circuits
 - Effectively a gated clock
 - Leads to timing issues
 - Use a PLL instead (we will cover this later)
 - A clock divider can be used for an external clock
 - Only if the external/internal relative clock edge is not critical
 - In order to see operation of designs on the DE10 we need to slow down the system clock (50MHz)
 - Run the entire system off of the slow clock
 - Removes timing issues
 - Typically dividing down to 1-30Hz
 - Approximately as fast as the human eye can see

- Clock Division Concept
 - Reference Clock (Fclk)

- Divided Clock (Fclk/n)
 - n = 6

Need a way to cause the divided clock to go high and low

Clock Division Concept

- Toggle the divided clock after counting to n/2
- Odd divisions not allowed
 - Much more complex
 - Asymmetrical no longer a square wave

- Clock Division Concept
 - 50MHz reference clock
 - 1Hz clock \rightarrow divide by 50,000,000 \rightarrow count 25,000,000 clocks
 - Toggle output
 - 10Hz clock \rightarrow divide by 5,000,000 \rightarrow count 2,500,000 clocks
 - Toggle output
 - Note: there may be overhead associated with the counter that modifies the count value

- Clock Divider First try
 - 1Hz example

Counter sizing: Count 25,000,000 clocks \rightarrow requires $\log_2 25,000,000 = 25$ bits

6

```
-- clock_1hz_first_try.vhdl
-- created 7/15/23
-- ti
-- rev 0
-- 1Hz clock divider
-- Brute force 1st try
-- assume a 50MHz external clock
-- Inputs: rstb, clk_50MHz
-- Outputs: clk_1Hz
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity clock_1hz_first_try is
   port (
         i_clk_50MHz : in std_logic;
         I_rstb : in std_logic;
         O_clk_1Hz : out std_logic
   ):
end entity;
```

```
architecture behavioral of clock_1hz_first_try is
   -- internal signals
   signal cnt:
                    unsigned(24 downto 0);
  signal clk_sig: std_logic;
begin
  process(i_clk_50MHz, i_rstb)
      begin
      -- reset
      if (i_rstb = '0') then
        cnt <= (others => '0');
         clk_siq <= '0';
      elsif (rising_edge(i_clk_50MHz) ) then
         cnt \leq cnt + 1:
        -- check if half way
        if (cnt = 24999999) then
            cnt <= (others => '0');
           clk_sig <= not clk_sig;
         end if:
      end if:
   end process;
                                       Remember 0 counts
                                      as one of the count
  -- Output logic
                                      values
  o_clk_1Hz <= clk_sig;</pre>
end behavioral;
                                                         © ti
```

Clock Divider – Second try

1Hz example

Clean up the code to make it easier to modify for different input/output frequencies

Clock Divider – Third try

1Hz example

Use 'best practices' and compare to <0 or >=0

ELE 3510

- Clock Divider Comparison
 - 1Hz example

'best practices' saved 19 logic elements at the cost of 1 FF

Try 2

Flow Summary	
< <filter>></filter>	
Flow Status	Successful - Sat Jul 15 15:23:06 2023
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	Class_examples
Top-level Entity Name	clock_1hz_second_try
Family	MAX 10
Device	10M50DAF484C7G
Timing Models	Final
Total logic elements	47 / 49760 (< 1 %)
Total registers	26
Total pins	3 / 360 (< 1 %)
Total virtual pins	0
Total memory bits	0 / 1,677,312 (0 %)
Embedded Multiplier 9-bit elements	0 / 288 (0 %)
Total PLLs	0/4(0%)
UFM blocks	0/1(0%)
ADC blocks	0/2(0%)

Try 3

Flow Summary	
🔍 < <filter>></filter>	
Flow Status	Successful - Sat Jul 15 16:03:14 2023
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	Class_examples
Top-level Entity Name	clock_1hz_third_try
Family	MAX 10
Device	10M50DAF484C7G
Timing Models	Final
Total logic elements	28 / 49 760 (< 1 %)
Total registers	27
Total pins	3 / 360 (< 1 %)
Total virtual pins	0
Total memory bits	0 / 1,677,312 (0%)
Embedded Multiplier 9-bit elements	0/288(0%)
Total PLLs	0/4(0%)
UFM blocks	0/1(0%)
ADC blocks	0/2(0%)

- Clock Divider Third try
 - 1Hz example RTL

- Clock Divider Third try
 - 1Hz example Simulation

Modified to do a divide by 10 (5MHz) to reduce simulation time

- Clock Divider Fourth try
 - Further optimization HW/Lab assignment