Last updated 12/23/23

Gate Concepts

We can generalize our inverter results to account for more complex gates

Make the effective $(W/L)_{pull-up} = 3 \times (W/L)_{pull-down}$ Mid supply switching point Equivalent rise and fall times

Remember the L of all devices is the same

• NOR – Minimum with matched $T_R/T_F/V_{SW}$

		To have a high output, all 3 pull-up devices must be on – but they are in series so the effective L is actually 3x10u = 30u
n this ca Pull-dow	case L = 10u, minimum W is 50u wn transistors can be minimum	L=10u W=450uTo maintain the 3x ratioV6 VDDP: X/30u == 3x 50u/10uL=10u W=450u $X = 450u$ very large !
	U3 GND INA L=10u W=50u U3 GND INC L=10u W=50u U12 GND INC L=10u W=50u	U1 GND L=10u W=50u FF Desc:: C-MOS_3-input NOR Gate Designed.by: û Designed.by: û RSITY Sheet : 1. of : 1

© tj

• NAND – Minimum with matched $T_R/T_F/V_{SW}$

NAND – Matched to minimum NOR (similar delays)

Matched delay NAND/NOR

Total transistor gate area 15,000u²

Total transistor gate area 9,000u²

NAND gates preferred over NOR gates for area

- Mis-Matched Delay NAND/NOR
 - still midpoint switching

Total transistor gate area 15,000u²

NAND gates preferred over NOR gates for area

Total transistor gate area 3,000u²

but NOR gates preferred over NAND gates for speed

© tj

- Gate AREA Equivalence
 - Use a minimum 2 input NAND gate as a reference for size and loading
 - Mismatched NAND/NOR delays
 - Midpoint switching

Overhead ignored (contacts, power, ...)

This is a specific example These ratios will depend on A lot of design factors Relative Size2 input NAND gate area = 2500u² = 1 NAND equivalentINV gate area = 2000u² = 0.8 NAND Eq.2 input NOR gate area = 7000u² = 2.8 NAND Eq.3 NOR = 6 NAND eq.4 NOR = 10.4 NAND eq.3 NAND = 1.2 NAND eq.4 NAND = 2.4 NAND eq.

Input Load (relative capacitance – 1 input) 2 input NAND gate area/input = 1250u² = 1 NAND equivalent INV gate area/input = 1000u² = 0.8 NAND Eq. 2 input NOR gate area/input = 3500u² = 2.8 NAND Eq. 3 NOR/input = 4 NAND eq. 4 NOR/input = 5.2 NAND eq. 3 NAND/input = 0.8 NAND eq. 4 NAND/input = 1.2 NAND eq.