C-MOS Design Tradeoffs

Last updated 12/23/23

- Total power
 - α proportion of clock intervals actually switching
 - β leakage factor

$$P = P_{DC} + P_{SW} + P_{Shoot}$$

$$P = \beta V_{DD} + \alpha C_{load} V_{DD}^2 F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$
Vin

All terms a function of V_{DD}

Vdd

M1

Vout

Cload

Power – Speed Tradeoff

Speed: $F \propto \frac{1}{t_{pd}} \qquad t_{pd} = \frac{C_{load} V_{DD}}{\frac{k'_n W}{2} (V_{DD} - V_t)^2} \propto \frac{1}{V_{DD}}$ Speed (F) is proportional to V_{DD}/C_{load} Power: $P = \beta V_{DD} + \alpha C_{load} V_{dd}^2 F + \alpha I_{peak} V_{dd} \left(\frac{t_r + t_f}{2}\right) F$

Power typically dominated by switching power, proportional to $C_{load} * V_{DD}^2 * F$

- Power Speed Tradeoff
 - Speed(F) \propto V_{DD} / C_{load} but Power \propto C_{load} * V_{DD}³
 - Can't have both low power and fast circuits
 - Saved by technology advancements
 - Smaller geometry ICs have:
 - Lower logic gate capacitances → smaller loads to drive
 - Shorter channel lengths → Higher drive capability
 - Speed(F): $C_{load} \downarrow \rightarrow F \uparrow$
 - Power: $C_{load} \downarrow \rightarrow P \downarrow$

To date, the technology advancements have provided enough speed improvement to allow V_{DD} to be reduced \rightarrow reduced power

- Power Speed Tradeoff
 - While technology improvements have allowed fast processors at low voltages, this is limited
 - The solution is to use multiple processors in parallel
 - Laptop 4 cores
 - Only run them when needed
 - Lots of strategies
 - Dynamic Voltage and Frequency Scaling (DVFS)
 - Big/Little
 - High performance cores today
 - $V_{DD} = 0.8V 1.2V$
 - $F_{clk} = 3-4GHz$

© ti

Design Tradeoffs: area - performance

- Matched switching points →
 - large gate sizes → slower operation
 - Higher drive, higher load capacitances
- Matched NAND/NOR gate $t_{PD} \rightarrow$
 - large gate sizes → slower operation
 - Higher drive, higher load capacitances
- Minimum gate sizes \rightarrow
 - large discrepancies in t_{PD}
 - Unmatched switching points
 - Lower drive, lower load capacitance

Design Tradeoffs: area - performance

- Need multiple versions of commonly used gates
 - Minimum gates for low frequency circuits where the variations in t_{PD} and switching points don't matter
 - Speed optimized gates for high frequency circuits
 - Require additional area
 - Scaled gates to drive long wires or external loads
 - High power (very large) gates to manage large current situations
 - Power gating