C-MOS Inverter

Last updated 12/23/23

C-MOS Inverter

- MOSFET Digital Configuration - body connections
- P-MOS body tied to $V_{D D}$

- N-MOS body tied to Gnd

C-MOS Inverter

- MOSFET Digital Configuration
- Nominal source connections

P-Channel
V_{G} low:

$$
\mathrm{M} 2 \text { is } \mathrm{ON} \rightarrow \mathrm{M} 2 \text {-drain }=\mathrm{V}_{\mathrm{DD}}
$$

V_{G} high:
M 2 is OFF $\rightarrow \mathrm{M} 2$-drain = open
$\xrightarrow[=]{s}$
N -Channel
V_{G} low:
M1 is OFF \rightarrow M1-drain = open
V_{G} high:
M 1 is $\mathrm{ON} \rightarrow \mathrm{M} 1$-drain $=$ Gnd

C-MOS Inverter

- MOSFET Digital Configuration - Inverter

Vin low:

$$
\begin{aligned}
& M 1 \text { is off } \rightarrow M 1_{D}=\text { open } \\
& M 2 \text { is on } \rightarrow M 2_{D}=V_{D D} \\
& \text { Vout = } V_{D D}
\end{aligned}
$$

Vin high:

$$
\begin{aligned}
& M 2 \text { is on } \rightarrow M 2_{D}=\text { open } \\
& M 1 \text { is off } \rightarrow M 1_{D}=G n d \\
& \text { Vout = Gnd }
\end{aligned}
$$

C-MOS Inverter

- Inverter - Qualitative - DC
- Assume $\mathrm{V}_{T n}=\mathrm{V}_{T p}$, and $\mathrm{V}_{\mathrm{DD}} \gg \mathrm{V}_{\mathrm{T}}$

Vin low:
$\mathrm{V}_{\mathrm{GS}-\mathrm{M} 1}=0 \rightarrow \mathrm{M} 1$ Cutoff $\rightarrow \mathrm{I}_{\mathrm{DS}-\mathrm{M} 1}=0 \rightarrow \mathrm{M} 1$ is off
$\mathrm{V}_{\mathrm{SG}-\mathrm{M} 2}=\mathrm{V}_{\mathrm{DD}}\left(>\mathrm{V}_{\mathrm{tp}}\right) \rightarrow$ Linear or Saturated M1 off $\rightarrow \mathrm{I}_{\mathrm{DS}-\mathrm{M} 1}=0 \rightarrow \mathrm{I}_{\mathrm{SD}-\mathrm{M} 2}=0 \rightarrow \mathrm{M} 2$ Linear $\rightarrow \mathrm{V}_{\mathrm{SD}-\mathrm{M} 2}=0$

Confirm M2 Linear
Vout $=V_{D D}$
$\mathrm{V}_{\mathrm{SD}}<\mathrm{V}_{\mathrm{SD} \text { sat }}=\mathrm{V}_{\mathrm{SG}}-\mathrm{V}_{\mathrm{Tp}}$

Vin high:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{SG}-\mathrm{M} 2}= & 0 \rightarrow \mathrm{M} 2 \text { Cutoff } \rightarrow \mathrm{I}_{\mathrm{SD}-\mathrm{M} 2}=0 \rightarrow \mathrm{M} 2 \text { is off } \\
\mathrm{V}_{\mathrm{GS}-\mathrm{M} 1}= & \mathrm{V}_{\mathrm{DD}}\left(>\mathrm{V}_{\mathrm{tn}}\right) \rightarrow \text { Linear or Saturated } \\
& M 2 \text { off } \rightarrow \mathrm{I}_{\mathrm{SD}-\mathrm{M} 2}=0 \rightarrow \mathrm{I}_{\mathrm{DS}-\mathrm{M} 1}=0 \rightarrow \mathrm{M} 1 \text { Linear } \\
& \rightarrow \mathrm{V}_{\mathrm{DS}-\mathrm{M} 1}=0
\end{aligned}
$$

Vout $=$ Gnd

Confirm M1 Linear
$\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{DS} s \mathrm{at}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Tn}}$

C-MOS Inverter

- Inverter - Qualitative - DC Transfer Characteristics

$$
\begin{aligned}
& \text { Vin: }<V_{T n} \\
& \text { Vin: }>V_{T n},<V_{D D}-V_{T p}, \text { Vout }>V_{D D} / 2 \\
& \text { Vin: }>V_{T n},<V_{D D}-V_{T p}, \text { Vout }=V_{D D} / 2 \\
& \text { Vin: }>V_{T n},<V_{D D}-V_{T p}, \text { Vout }<V_{D D} / 2 \\
& \text { Vin: }>V_{D D}-V_{T p}
\end{aligned}
$$

C-MOS Inverter

- Inverter - Qualitative - DC Transfer Characteristics

C-MOS Inverter

- Inverter - Design

Assuming Vdd is big enough to keep M 2 and M 1 in saturation at the switching point: $I_{D-M 1}=I_{D-M 2}$
$\frac{k_{p}^{\prime}}{2} \frac{W 2}{L 2}\left(V_{s g 2}-V_{t p}\right)^{2}=\frac{k_{n}^{\prime}}{2} \frac{W 1}{L 1}\left(V_{g s 1}-V_{t n}\right)^{2}$
Desire a consistent switching point: Vin = Vout = Vdd/2

$$
\frac{k_{p}^{\prime}}{2} \frac{W 2}{L 2}\left(V_{d d} / 2-V_{t p}\right)^{2}=\frac{k_{n}^{\prime}}{2} \frac{W 1}{L 1}\left(V_{d d} / 2-V_{t n}\right)^{2}
$$

C-MOS Inverter

- Inverter - Design - cont'd

Manipulating the equation

$$
\frac{W 1 / L 1}{W 2 / L 2}=\frac{k_{p}^{\prime}}{k_{n}^{\prime}}\left(\frac{V_{d d} / 2-V_{t p}}{V_{d d} / 2-V_{t n}}\right)^{2}
$$

If we make $V_{t p}=V_{t n}, \quad V_{d d}$ drops out of the equation

$$
\frac{W 1 / L 1}{W 2 / L 2}=\frac{k_{p}^{\prime}}{k_{n}^{\prime}}
$$

And the switching point remains $\mathrm{V}_{\mathrm{dd}} / 2$ regardless of V_{dd}

C-MOS Inverter

- Inverter - Design - cont'd

Earlier we saw $k_{n}^{\prime}=\sim 3 \times k_{p}^{\prime}$
In a typical CMOS digital technology $L_{P}=L_{N}$

$$
\frac{W 1 / L 1}{W 2 / L 2}=\frac{W_{N} / L_{N}}{W_{P} / L_{P}}=\frac{k_{p}^{\prime}}{k_{n}^{\prime}}
$$

Resulting in $\mathrm{W}_{\mathrm{P}}=\sim 3 \times \mathrm{W}_{\mathrm{N}}$

> With $L_{P}=L_{N}$, and $W_{P}=3 \times W_{N}$ the current drive of the N and P are the same \rightarrow switching point $=V_{D D} / 2 \rightarrow$ design is consistent with rising and falling inputs

- Inverter - Design

$$
\begin{aligned}
& \text { Vtn }=1 \mathrm{~V} \\
& \mathrm{Vtp}=1 \mathrm{~V} \\
& \mathrm{k}^{\prime} \mathrm{n}=14 \mathrm{uA} / \mathrm{V}^{2} \\
& \mathrm{k}^{\prime} \mathrm{p}=4.5 \mathrm{uA} / \mathrm{V}^{2}
\end{aligned}
$$

In this case the ratio is 14/4.5 instead of 3

The circuit switches at VDD/2 regardless of the supply voltage

