Last updated 12/23/23

- 3 Major power components
 - DC power
 - Switching Power
 - Shoot-Through

2

- DC power
 - Junction leakage (Drain to Body)
 - Reverse diode leakage
 - Vout = 0 P-channel leaks
 - Vout = V_{DD} N-channel leaks

3

- Switching Power
 - Charging / Dis-charging the load and parasitic Cs
 - Can cause noise in V_{DD} and Gnd

$$E = \int_{0}^{\infty} i(t) V_{out} dt = \int_{0}^{\infty} C \frac{dv}{dt} V_{out} dt = \int_{0}^{V_{dd}} C V_{out} dv = \frac{1}{2} C V_{DD}^{2}$$

- Worst case
 - Rise and fall with every clock edge
 - C^{*}_{load} includes parasitic capacitances

 $P = C_{load}^* V_{DD}^2 F$

Power is proportional to V_{DD}^2

- Shoot-Through
 - Short period of time when both devices are on
 - Current from V_{DD} to Gnd
 - Can cause noise in V_{DD} and Gnd

 $P = I_{peak} V_{dd} \left(\frac{t_r + t_f}{2}\right) F$

Power is proportional to V_{DD}

- Total power
 - α proportion of clock intervals actually switching
 - β leakage factor (number of gates * leakage current)

