Dynamic Voltage and Frequency Scaling

Last updated 1/25/24

Clock Gating

- Clock Gating Local
 - Local clock gating creates the potential for generating clock skew
 - Leads to Setup/Hold timing violations and functional failures

Clock Gating

- Clock Gating Global
 - Gate the clock to entire blocks
 - Removes the switching current components of power
 - Data is retained
 - Requires all blocks to have matched clock paths
 - Restart (enable) must be managed carefully

Power Gating

- Power Gating Local
 - Removes switching and leakage power
 - Add power gating transistors to gates
 - Data is lost when disabled
 - Restart must be managed carefully

Power Gating

- Power Gating Global
 - Removes switching and leakage power
 - Add LARGE power gating transistors to the power supply line in blocks
 - Data is lost when disabled
 - Restart must be managed carefully

- Dynamic Voltage and Frequency Scaling (DVFS)
 - Provide just enough capability to get the job done
 - Minimize power in the process
 - From our gate delay discussion

$$t_{pd} = \frac{C_{load} V_{dd}}{\frac{k'_n W}{2} (V_{dd} - V_t)^2}$$

Increasing Vdd reduces gate delays → higher operating frequency

From our power discussion

$$P = P_{DC} + P_{SW} + P_{Shoot-through}$$
$$P = \beta V_{DD} + \alpha C_{load} V_{DD}^2 F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$

All terms a function of V_{DD}

- DVFS Static implementation
 - Given
 - A fixed set of hardware, e.g. (CPU + memory + gates + peripherals)
 - A required set of tasks to be performed in a specific amount of time
 - The minimum required clock frequency can be calculated
 - Design the system to provide the minimum Vdd required to allow the minimum clock frequency
 - Lowest possible power

$$P = \beta V_{DD} + \alpha C_{load} V_{Db}^{2} F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$

- DVFS Frequency implementation
 - Given
 - A fixed set of hardware, e.g. (CPU + memory + gates + peripherals)
 - A changing set of tasks to be performed in various required amounts of time
 - The required clock frequency for the worst case (highest performance) scenario can be calculated
 - Design the system to provide the minimum Vdd required to allow the maximum required clock frequency
 - Design the system to reduce the clock frequency (PLL) when not in the worst case scenario

$$P = \beta V_{DD} + \alpha C_{load} V_{DB}^2 F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$

- DVFS Voltage and Frequency implementation
 - Given
 - A fixed set of hardware, e.g. (CPU + memory + gates + peripherals)
 - A changing set of tasks to be performed in various required amounts of time
 - The required clock frequency for the worst case (highest performance) scenario can be calculated
 - Design the system to reduce Vdd and the clock frequency (PLL) when not in the worst case scenario

$$P = \beta V_{DD} + \alpha C_{load} V_{DB}^2 F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$

- DVFS System implementation
 - Given
 - A variable (through clock or power gating) set of hardware, e.g. (2 CPUs + memory + gates + peripherals)
 - A changing set of tasks to be performed in various required amounts of time
 - Modify Vdd, F, and resources as required

Required tasks / unit time