
Flip-Flop Construct

Last updated 2/8/24



2 © tjELE 3510

Flip-Flop Construct

• VHDL has no code-keyword / defined structure to 
create a flip-flop
• Flip-Flop constructs were developed by the synthesis tool 

developers

• While most are essentially the same – it is not guaranteed



3 © tjELE 3510

Flip-Flop Construct

process (clk)
   begin
      if(rising_edge(clk)) then  
         q <= d;
      end if;
   end process;

• Registers (Flip-Flops) are recognized by a pre-
defined template
• Provided by the synthesis/simulation tool developer

process (clk)
   begin
      if(clk’event and clk = 1) then  
         q <= d;
      end if;
   end process;

2008 release

process (clock signal)
   begin
      if(clock edge detection) then  
         actions
      end if;
   end process;

note:
- here the else is not required 

because the synthesizer 
recognizes the edge detection

- you can include an else for clarity



4 © tjELE 3510

Flip-Flop Construct

library ieee;
use ieee.std_logic_1164.all;

entity dff_a is
port(

i_clk: in std_logic;
i_rstb: in std_logic;
i_D : in std_logic;

o_Q :    out std_logic
);

end entity;

architecture behavioral of dff_a is
begin
   process (i_clk, i_rstb)
   begin
      if (i_rstb = '0') then
         o_Q <= ‘0’;
      elsif (rising_edge(i_clk)) then
         o_Q <= i_D;
      end if;
   end process;
end architecture;

• D-FF w/ asynchronous rstb

Most of our designs will use DFFs with an asynchronous reset BAR

Note addition 
of rstb to the 
sensitivity list

Data Path designs will use DFFs with no reset



5 © tjELE 3510

Flip-Flop Construct

library ieee;
use ieee.std_logic_1164.all;

entity dff_a is
port(

i_clk: in std_logic;
i_rstb: in std_logic;
i_D : in std_logic;

o_Q :    out std_logic
);

end entity;

architecture behavioral of dff_a is
begin
   process (i_clk, i_rstb)
   begin
      if (i_rstb = '0') then
         o_Q <= ‘0’;
      elsif (rising_edge(i_clk)) then
         o_Q <= i_D;
      end if;
   end process;
end architecture;

• General rules

Asynchronous 
elements go before 

the rising_edge

Synchronous 
elements go inside 

the rising_edge

Only 1 rising_edge 
in a process



6 © tjELE 3510

Flip-Flop Construct

• D-FF w/ synchronous set, rstb, en

Note: there is an 
inherent priority 
in this design

Note rstb, set, and 
en are NOT in the 
sensitivity list



7 © tjELE 3510

Flip-Flop Construct

• D-FF w/ synchronous set, rstb, en

priority
rstb  >  set  >  en



8 © tjELE 3510

Flip-Flop Construct

• Warning – Warning – Warning
• The FF construct is an exception to the if/else rule for 

creating latches

• Outside the FF construct:
• If you do not complete an if-else with an else, a latch will be created

• If you do not cover all cases in a case statement, a latch will be 
created

• All paths/cases must be covered

• The compiler will always warn you it created a latch

We do not want latches - EVER 

I can see a latch in an RTL diagram from a mile away


	Slide 1: Flip-Flop Construct
	Slide 2: Flip-Flop Construct
	Slide 3: Flip-Flop Construct
	Slide 4: Flip-Flop Construct
	Slide 5: Flip-Flop Construct
	Slide 6: Flip-Flop Construct
	Slide 7: Flip-Flop Construct
	Slide 8: Flip-Flop Construct

