Last updated 2/8/24

* VHDL has no code-keyword / defined structure to
create a flip-flop

* Flip-Flop constructs were developed by the synthesis tool
developers

* While most are essentially the same — it is not guaranteed

ELE 3510 2 © tj

» Registers (Flip-Flops) are recognized by a pre-
defined template
* Provided by the synthesis/simulation tool developer

process (clock signal)
begin

actions
end if;
end process;

if(clock edge detection) then

note:

- here the else is not required
because the synthesizer
recognizes the edge detection

- you can include an else for clarity

process,

ELE 3510 3

o aild e '8
ﬁ)cess (clk) N
begin
if(rising_edge(clk)) then
q<=d;
end if;

end process;

-~

T —

e
2008 release

© tj

* D-FF w/ asynchronous rstb

library ieee;

architecture behavioral of dff_ais

Note addition
of rstb to the
sensitivity list

D>
i_clk| >——

1'h0

o_Q-~reg0

D
>CLK Q
SCLR

CLRN

i_rstb M

use ieee.std logic_1164.all; begin
process (i_clk, i_rstb)
entity dff_ais begin
port(if (i_rstb ='0") then
i_clk: instd_logic; o Q<=0
i_rstb: instd_logic; elsif (rising_edge(i_clk)) then
i_D: instd_logic; o Q<=i_D;
end if;
o _Q: outstd logic end process;
); end architecture;
end entity;
Most of our designs will use DFFs with an asynchronous reset BAR
Data Path designs will use DFFs with no reset
ELE 3510

© tj

* General rules

library ieee;
use ieee.std_logic_1164.all;
entity dff_ais
port(
i_clk: instd_logic;
i_rstb: instd_logic;
i D: instd_logic;
o _Q: outstd logic
);
end entity;

architecture behavioral of dff_ais
begin

Asynchronous
elements go before
the rising_edge

process (i_clk, i_rstb)
begin /
if (i_rstb ='0") then}
o Q<=0
elsif (rising_edge(i_clk)) then
0 Q<=i _D; } N
end if;

end process;
end architecture;

ELE 3510

Only 1 rising_edge
in @ process

Synchronous
elements go inside
the rising_edge

© tj

* D-FF w/ synchronous set, rstb, en

-- dff_s.vhdl
-- created 7/5/2018
-- tj

-- Inputs: D, clk, rstb, set, enable
-- Outputs: Q

Tibrary ieee;
use ieee.std_logic_1164.al1l;

entity dff_s 1is

port(
i_clk: in std_Tlogic;
i_rstb: 1in std_logic;
i_set: in std_logic;
i_en: in std_Tlogic;
i_D : in std_Togic;
0_Q : out std_logic

J;
end entity dff_s;

Note rstb, set, and
en are NOT in the
sensitivity list

architecture behavioral of dff_s 1is

begin
process(i_clk)
begin

if (rising_edge(i_c1k)) then
if (i_rstb = '0') then

0_Q <= '0";
elsif (i_set =
0_Q <= "1";

e1sif (i_en = '1') then

0_Q <= 1i_D;
end if;
end if;
end process;

end architecture;

'1') then

ELE 3510

Note: there is an
inherent priority
in this design

© tj

* D-FF w/ synchronous set, rstb, en

archi
begin

tecture behavioral of dff_s is

process(i_c1k)
begin

if (rising_edge(i_c1k)) then
if (i_rstb = '0') then

0_Q <= '0";
elsif (i_set = '"1') then
0_Q <= "1";
elsif (i_en = '1') then
0_Q <= 1_D;
end if;
end if;

end process;

end architecture;

i_en

o[>

o_Q~0

i_rsto[>

i_set[>

o_Q~reg0

D

CLK Q

i_clk[>

1'ho|

SCLR

ELE 3510

rstb > set > en

priority

© tj

ELE 3510

* Warning — Warning — Warning
* The FF construct is an exception to the if/else rule for
creating latches
* Outside the FF construct:

If you do not complete an if-else with an else, a latch will be created

If you do not cover all cases in a case statement, a latch will be
created

All paths/cases must be covered
The compiler will always warn you it created a latch

We do not want latches - EVER

| can see a latch in an RTL diagram from a mile away

	Slide 1: Flip-Flop Construct
	Slide 2: Flip-Flop Construct
	Slide 3: Flip-Flop Construct
	Slide 4: Flip-Flop Construct
	Slide 5: Flip-Flop Construct
	Slide 6: Flip-Flop Construct
	Slide 7: Flip-Flop Construct
	Slide 8: Flip-Flop Construct

