ELE 3510

1A – How many onboard memory blocks would be required to support a 1K word, 16b/word SRAM memory? 10 pts

HW11

Name

1KW x 16b/W = 16Kb \rightarrow 2 M9K blocks

1B – What is the largest size 32bit word memory that can fit in a single on chip memory block? 10 pts

M9K has extra 1K bits attached to the word width, not the # of words \rightarrow 8Kb \rightarrow 1KB \rightarrow 256W in x32 configuration

Feature	M9K Block	
Configurations (depth × width)	8192 × 1	Parity used as memory
	4096 × 2	
	2048×4	
	1024×8	
	1024×9	
	512 × 16	/
	512×18	
	256 × 32	
	256 × 36	The second se

ELE 3510

HW11

Name

2 - Implement a dual clock 8KB single port SRAM in by-32 configuration using the

sram_8KB_in_by32_mega.vhd1 bde showind created 4/25/17 tj bwing the n rev 0 8KB in x32 dq RAM from mega library Inputs: clk, addr, data_in, we_b -- Outputs: data_out library ieee; use ieee std_logic_1164 all; use ieee.numeric_std.all; entity sram_8KB_in_by32_mega is port(i_clk_in: in std_logic; i_clk_out: in std_logic; i_we_b: in std_logic; in std_logic_vector(10 downto 0); i_addr: i_data_in: in std_logic_vector(31 downto 0); o_data_out: out std_logic_vector(31 downto 0)); end: architecture behavioral of sram_8KB_in_by32_mega is -- invert we signal we_sig: std_logic; component SRAM_8KB_in_by32 PORT address : IN STD_LOGIC_VECTOR (10 DOWNTO 0); data : IN STD_LOGIC_VECTOR (10 DOWNTO 0); inclock : IN STD_LOGIC_:= '1'; outclock : IN STD_LOGIC ; : IN STD_LOGIC ; wren : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) q); end component; begin we_sig <= not i_we_b;</pre> SRAM_8KB_in_by32_inst : SRAM_8KB_in_by32 PORT MAP (address => i_addr, data => i_data_in, inclock => i_clk_in, => i_clk_out, outclock wren => we_sig, => o_data_out a): end behavioral:

Flow Summary	
< <filter>></filter>	
Flow Status	Successful - Fri Jun 26 11:5
Quartus Prime Version	18.1.0 Build 625 09/12/20
Revision Name	hw6
Top-level Entity Name	sram_8KB_in_by32_mega
Family	MAX 10
Device	10M50DAF484C7G
Timing Models	Final
Total logic elements	1 / 49,760 (< 1 %)
Total registers	0
Total pins	78 / 360 (22 %)
Total virtual pins	0
Total memory bits 🤇	65,536 / 1,677,312 (4 %)
Embedded Multiplier 9-bit elements	0/288(0%)
Total PLLs	0/4(0%)
UFM blocks	0/1(0%)
ADC blocks	0/2(0%)