ELE 3510

HW2
Name

ELE 3510

2 - Create a truth table and a SOP or POS logic equation for the circuit below . This is called a compound gate.

\mathbf{A}	\mathbf{B}	\mathbf{C}	OUT
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

a'b'c' + a'bc' + ab'c'

3 - Use DeMorgan's theorem to reduce the logic equation in problem 2. Implement the solution with NANDs, NORs, and Inverters. Compare the 6transistor solution in problem 2 to your solution above with respect to area and speed

30pts
$a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b c^{\prime}+a b^{\prime} c^{\prime}$
$a^{\prime} c^{\prime}\left(b+b^{\prime}\right)+a b^{\prime} c^{\prime}$
$a^{\prime} c^{\prime}+a b^{\prime} c^{\prime}$
$c^{\prime}\left(a^{\prime}+a b{ }^{\prime}\right)$

$\overline{c+\left(\overline{a^{\prime}+a b^{\prime}}\right)}$
$c+a(\overline{a b})$
$\overline{c+a\left(a^{\prime}+b\right)}$
Compound gate is:
Faster (1 delay vs. 3 delays) Smaller (6T vs. 10T)
$\overline{c+a a^{\prime}+a b}$
Most logic libraries include a large number of compound gates
$\overline{c+a b}$
$\overline{c+\overline{\bar{a}}}$

