ELE 3510

1 – Analysis: Create a table of the calculated expension of the from 0V to 5V in 0.5V increments.
 Note: be sure to confirm the NMOS operating

NOTE: $V_{dsat} = V_{GS} - V_t$				
	· · · · · · · · · · · · · · · · · ·			
	5.0V D			
Specific approach: VDS = VDD - Id * R1 R1 1.5KO				
<u>v_c</u>	out v_out			
Specific approach: In this case we know that when V_in Is just above VT we will get a small Current \rightarrow VDS still very large \rightarrow Vt = 1v Kn' = 2e-3A/V2 W/L = 1				
sat – find ID, calc VDS check Vdsat If fails – Solve linear eqn for VDS 2 solutions				

put back in eqn only 1 should work General approach: Check for cutoff Assume sat – find ID, calc VDS check Vdsat If fails – Solve linear eqn for VDS 2 solutions put back in eqn only 1 should work

Vin	ID	VDS	Mode
0	0.00E+00	5.000	cutoff
0.5	0.00E+00	5.000	cutoff
1	0.00E+00	5.000	cutoff
1.5	2.50E-04	4.625	sat
2	1.00E-03	3.500	sat
2.5	2.25E-03	1.625	sat
3	2.75E-03	0.880	lin
3.5	2.89E-03	0.667	lin
4	2.97E-03	0.544	lin
4.5	3.02E-03	0.463	lin
5	3.06E-03	0.403	lin

ELE 3510

HW2

Name_

2 – Create a truth table and a SOP or POS logic equation for the circuit below . This is called a compound gate. 30pts

Α	В	С	OUT
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

a'b'c' + a'bc' + ab'c'

ELE 3510

 3 – Use DeMorgan's theorem to reduce the logic equation in problem 2.
 Implement the solution with NANDs, NORs, and Inverters. Compare the 6transistor solution in problem 2 to your solution above with respect to area and speed

HW2

```
a'b'c' + a'bc' + ab'c'

a'c'(b + b') + ab'c'

a'c' + ab'c'

c'(a' + ab')

\overline{c + (\overline{a' + ab'})}

\overline{c + a(\overline{ab'})}
```

Compound gate is:

 $\overline{c + a(a' + b)}$

 $\overline{c + aa' + ab}$

Most logic libraries include a large number of compound gates

Name

OUT

Faster (1 delay vs. 3 delays)

Smaller (6T vs. 10T)

 $\overline{c + ab}$ $\overline{c + ab}$