ELE 3510 HWS Name

1 — Create the 2 test processes described below and provide a simulation.
Assume an existing clk process running with period PER and a resetb
process that releases reset on the 2" falling clock edge 50pts

You can use any existing design as the top level block for compiling the code

Periodic input “foo” with period 4 8 bit signal “boo” that increments
times the clock period and a 25% every 6th cycle and repeats
duty cycle that runs for 7 “foo” infinitely

periods then stops. Synchronized to
the falling clock edge.

ELE 3510 HWS Name

1 — Create the 2 test processes described below and provide a simulation.
runnina with neriod PER and a reseth

1e 2" 8 bit signal “boo” that increments
every 6th cycle and repeats
infinitely

Periodic input “foo” with period 4
times the clock period and a 25%
duty cycle that runs for 7 “foo”
periods then stops. Synchronized to
the falling clock edge.

foo process -
foo _proc: process
J begin i
-— '|n'|t'|a'|'|2e value boo_proc: process
begin
-- initialize value
- wait ‘FJr reset boo <= (others == '0');

1a'|t for 2%PER;
- wait for reset

-- already on falling clock edge 1».'a'it for 2*PER;

-- create a 7 cycle Toop -- no clock edge specified - use falling

for i din 1 to Toop
foo <= "1"

-- create infinite process

wait for 1 “PER; Toop

foo <= "0"; wait for G%PER;

wait for 3*PER; boo <= std_logic_vector{unsigned(boo) + 1);
end Toop; end loop;

end process;
-- cause it to stop
wait;

| = —— ™™ end process;

Y] TR TR PGS em e] L) WO |

25% duty cycle

period = 4x
repeats 7 times

-
T Now ZUUDDDDp A T B AR NI T T ..J;.t....
4

il

I_t—_l_l__l

1706 ps to 848428 ps

ELE 3510

HWS

Name

2 — Create the testbench and simulation for the JK Flip-Flop from problem 2 of
HW 4. Be sure you can clearly see and identify each mode of operation 50pts

-- ff_jk_special_tb.vhdl

-- created: 9/6/18
-- by: johnsontimoj
-- rev: 0

-- testbench for ff_jk_special

1ibrary ieee;
use ieee.std_logic_1164.al11;
use ieee.numeric_std.all;

entity ff_jk_special_tb 1is
-- ho entry - testbench
lend entity;

larchitecture testbench of ff_jk_special_tb is

signal CLK: std_Tlogic;
signal RSTB: std_logic;
signal SET: std_logic;
signal J: std_1logic;
signal K: std_logic;
signal Q: std_1logic;
signal Qb: std_1logic;
constant PER: time:= 20 ns;

ICOMPONENT ff_jk_special

port (
i_clk @ 1in std_Tlogic;
i_rstb : 1in std_Tlogic;
i_set : 1in std_Tlogic;
i_d in std_logic;
i_K : in std_logic;
0_Q : out std_Tlogic;
o_Qb : out std_logic

DUT: ff_jk_special

port map(
i_clk => CLK,
i_rstb => RSTB,
i_set => SET,
i_J => 1],
i_K => K,
0_Q =>Q,
o_ab => Qb
3
-- Test processes
-- Clock process
clock: process -- note - no sensitivity
begin
CLK <= '0'";
wait for PER/2
infinite: Toop
CLK <= not CLK; wait for PER/Z;
end Toop;

end process clock;

-- Set process

set_process: process -- note - no sensitiy
begin

SET <= '1"; wait for 2*PER;

SET <= '0"; wait;

end process set_process;

-- Run Processes
run: process

begin
-- initialize 1inputs
RSTB <= '1°;
J <= '0";
K <= '0";

-- wait for reset
wait for 2%PER;

--00 case
wait for 3*PER;

--10 case

J <= 'O"

K <=

wait for 3%PER;

--01 case
J <= "1";
K <= '0";
wait for 3*PER;

--11 case

J <= 'l"

K <= "1"

wait for 2%PER;

-- rstb case

RSTB <= '0';

wait for 3*PER;
end process;

lend architecture;

ELE 3510 HWS Name

2 — Create the testbench and simulation for the JK Flip-Flop from problem 2 of
HW 4 S0pts

1,1 — toggle

Jff_k_spedal_tb/J
[ff_ik_spedal_tb/K
[ff_k_spedal_tb/Q
[ff_jk_spedial_tb/Qb

0,0 — no change 0,1 — Q high rstb low — Q low
On next clock edge

	Slide 1: ELE 3510 HW5 Name_______________
	Slide 2: ELE 3510 HW5 Name_______________
	Slide 3: ELE 3510 HW5 Name_______________
	Slide 4: ELE 3510 HW5 Name_______________

