1) Determine the total number of bits in each memory - assume digital values for $\mathrm{K}, \mathrm{M}, \mathrm{G}$
a) 256 Mb SRAM in a $\times 4$ configuration

$$
256 \mathrm{Mb} \rightarrow 2^{8} 2^{20} \text { bits } \rightarrow 256 \mathrm{Mb} \rightarrow 268,435,465 \text { bits }
$$

b) $64 \mathrm{~GB} \times 16$ NAND Flash
$64 \mathrm{~GB} \times 16 \rightarrow 2^{6} 2^{30} 2^{3} 2^{4}$ bits $\rightarrow 2^{43}$ bits $\rightarrow 8 \mathrm{~Tb} \rightarrow 8,796,093,022,208$ bits
2) Determine the total number of address lines required for each memory assume no address line sharing and digital values for K, M, G 25pts
a) 128 KB ROM in a $\times 8$ configuration

Bytes in a x8 $\rightarrow 1$ address / byte
128 KB in a $\times 8 \rightarrow 128 \mathrm{~K}$ addresses $\rightarrow 2^{7} 2^{10}$ addresses $\rightarrow 17$ address lines
b) 32 Gb NOR Flash in a $\times 16$ configuration

32Gb in a $\times 16 \rightarrow 2 \mathrm{G}$ addresses $\rightarrow 2^{1} 2^{30}$ addresses $\rightarrow 31$ address lines
3) Assuming a square memory cell, shared address lines for the row and column decoders and a square overall memory footprint, determine the best address bus width - assume digital values for $\mathrm{K}, \mathrm{M}, \mathrm{G}$

256 Mb SRAM in a $\times 4$ configuration
256 Mb in $\times 4 \rightarrow 64 \mathrm{M}$ addresses $\rightarrow 2^{6} 2^{20}$ addresses $\rightarrow 26$ address lines
in $\mathrm{x} 4,4$ rows for every column $\rightarrow 4 \mathrm{x}$ as many row addresses as col addresses
to make the overall footprint square
$\rightarrow 2$ more row address bit than column address bits
$\rightarrow 2$ more row address lines than column address lines
$26=$ rows + cols $=($ cols +2$)+$ cols
$\rightarrow 12$ column address lines and 14 row address lines
\rightarrow address bus of 14 lines (16 if you include CAS and RAS)
4) Create a state transition diagram for 5 speed automatic transmission with P and R
inputs: engine RPM, Shifter (P, D, R)
outputs: gear (1-5, Pk, Rvs)
Notes: upshifts at 3500rpm, downshifts at 1100 rpm

D and (RPM < 3500) and ($\mathrm{RPM}>1100$)

