ELE3510 Lab 5: FSM

1 dedicated lab period, 1 lab period to complete

Objectives

- Review FSM concepts
- Utilize the switches and seven segment displays

	student
Prelab	check off
 Review the SSEG display info from CE1911 	
 Review the FSM class notes 	

Assignment

Part 1: Create a controller for a simple Elevator

Specifications:

- The number of floors is specified via a generic: NUM_FLOORS (must work for ANY positive value)
- 2) If a "desired_floor" value above the maximum is input the elevator should go to the top floor
- 3) No negative floor numbers (starts at 1)
- 4) If the wait time on a floor exceeds the DELAY_CNT(generic) clks, automatically return to floor 1
- 5) If the "desired_floor" input changes while in transit, the new "desired floor" value will take effect immediately
- 6) If the "desired_floor" input changes while returning to floor 1 automatically, the new "desired floor" input will be ignored until floor 1 is reached
- 7) Generics:
 - a. NUM_FLOORS
 - b. DELAY_CNT
- 8) Input signals:
 - a. rstb
 - b. clk
 - c. desired floor (? bits)
- 9) Output signals:
 - a. Desired floor displayed on SSEGs in hex (assume no more than 255 floors for this part only)
 - b. Current floor displayed on SSEGs in hex (assume no more than 255 floors for this part only)
 - c. LED indicating desired floor has been reached

Additional Requirements:

- 1) Implementation must be via an FSM
- 2) A separate binary_to_sseg_hex block must be implemented and instantiated in the DE10 implementation
- 3) Run simulation(s) to verify operation (see following for the required sequence)
- 4) Create a DE10 implementation of your design
 - a) Provide support for 60 floors (NUM_FLOORS)
 - b) Set the DELAY_CNT generic to 10
 - c) SW0 resets to floor 1
 - d) SW1 SW6 indicate the desired floor in binary
 - e) LED0 indicates desired floor reached

- f) Desired floor displayed on SSEGs 5/4 in hex
- g) Current floor displayed on SSEGs 1/0 in hex

Check Off

You must demonstrate your working design(s) prior to the beginning of the next lab period

• Demo the Elevator FSM (Simulation, DE10)

80%

Lab Report (informal)

- Due at 4:00 pm, the day of the next lab period in the box
- Include a properly documented informal lab report.

20%

Elevator Simulation

NUM_FLOORS = 60, DELAY_CNT = 10

Up to 18

Change to 12 part way (should change)

Down to 6

Wait long enough for an automatic return

Attempt to change during return (should not change)

Attempt to go to 63 (should stop at 60)

