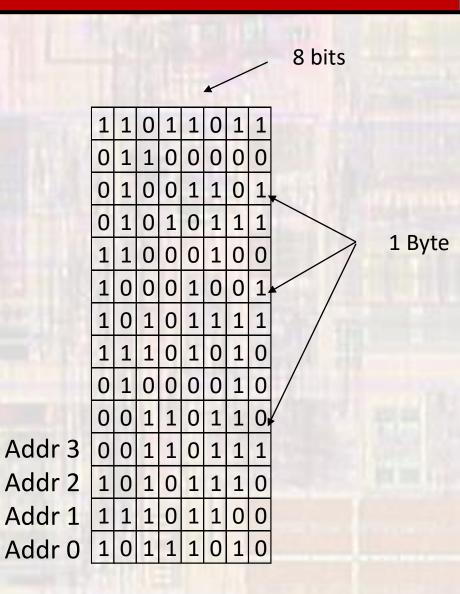

Last updated 9/19/23

These slides introduce semiconductor memories

Elements

- Minimum logical element
 - 1 bit (b)
 - Has a logical value of '0' or '1'
 - Has a physical value of "vdd" or "gnd"
 - 5v, 3.3v, 2.4v, 1.8v, 1.2v
- Minimum accessible storage element
 - 1- Byte (B)
 - 8 bits
- Minimum Addressable element
 - 1 Word
 - Situational dependent length
 - 1B, 2B, 4B, 8B, 16B, ...


- Logical configuration
 - Long column of bytes
 - 1st address is "0"
 - Typically thought of as growing up
 - Sometimes thought of as growing down

Addr 2 Addr 1 Addr 0

ELE 3510

- Initialization
 - Even though we may not have stored anything in a specific memory location
 - It has a value
 - The value is likely random

ELE 3510 4 © tj

- Write
 - Provide Address and Data
 - Write (addr 4, 11101000)
 - Write (addr 6, 00000101)
 - Write (addr 10, 11001010)
 - Note: Writing overwrites existing data

Addr 3

Addr 2

Addr 1

Addr 0

ELE 3510 5

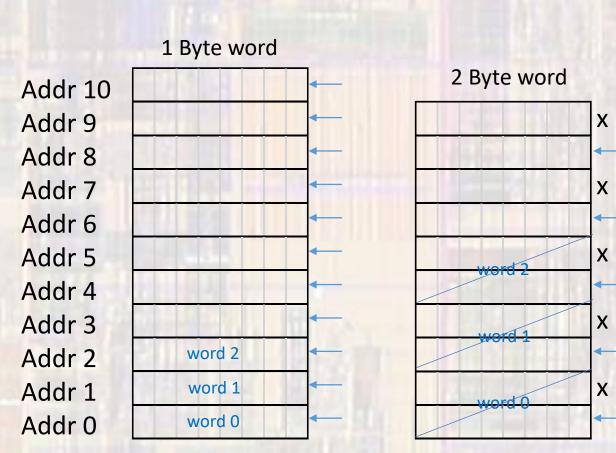
Read

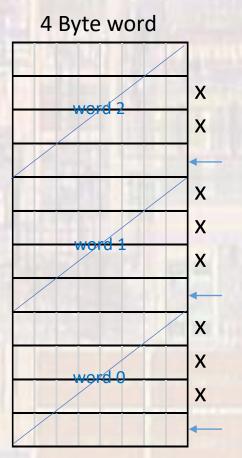
Provide Address

- Read (addr 4) → 11101000
- Read (addr 6) → 00000101
- Read (addr 8) → ?????????

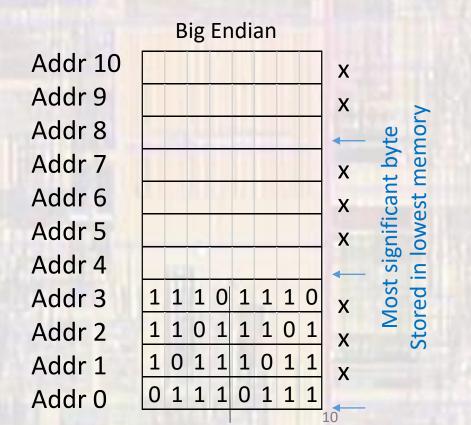
NOTE: Reading does not destroy the data

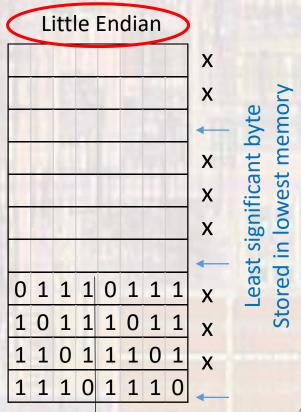
Addr 0


- Addresses
 - Addresses are NOT part of the memory array
 - Addresses are logic circuits to choose which part of the array to read from or write to – decoders determine the location


0	0	1	0	0	1	1	11
1	1	1	0	1	0	0	0
0	0	0	1	1	1	0	1
1	1	0	0	1	0	1	0
0	1	1	1	1	0	1	1
0	0	0	1	0	0	0	1
0	0	0	1	1	1	0	1
0	0	0	0	0	1	0	1
1	0	1	1	0	1	0	0
1	1	1	0	1	0	0	0
1	0	0	1	0	1	1	1
1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	0
1	0	1	0	1	0	0	1

Addr 3 Addr 2 Addr 1 Addr 0


- Word Alignment
 - Processors work with data WORDS
 - Size of the internal registers
 - 1 Byte 8 bit processor
 - 2 Bytes 16 bit processor
 - 4 Bytes 32 bit processor
 - 8 Bytes 64 bit processor
 - Memory is word aligned
 - Must access the entire word
 - Not allowed/possible to access inside a word*


- Word Alignment
 - Allowed addresses indicated by

- Endianness
 - The order words > 1B are stored in memory
 - data value 01110111 10111011 11011101 01110111 in a 4 byte word

ELE 3510