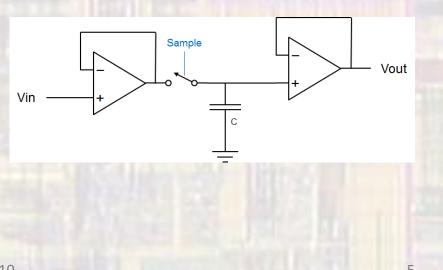

Mixed Signal Design

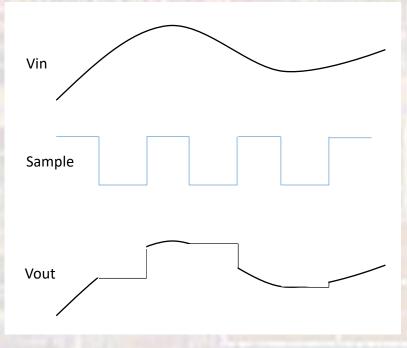
Last updated 1/25/24

Mixed Signal Design

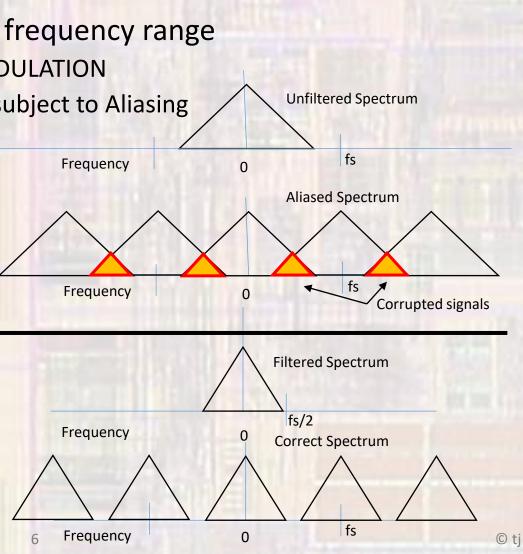
- Most of the real world is analog
 - Temperature, pressure, voltage, current, ...
 - To work with these values in a computer we must convert them to/from digital representations
 - Analog to Digital Conversion
 - Digital to Analog Conversion

- 1 bit conversion
 - Rough conversion
 - We know CMOS gates transition around VDD/2
 - Use a resistor divider to convert the analog signal (desired switching level) to VDD/2


Analog signal ranges form 0V to 5V Want the switching point to be 2.5V


Digital circuit runs at 3.3V (~1.65V transition point)

Choose: R2 = $50K\Omega \rightarrow R1 = 26K\Omega$


- N-bit conversion
 - Break the analog signal into 2^N steps
 - 3 steps in the conversion
 - Limit the input frequency range
 - Sample the input
 - Convert to the digital value

- N-bit Conversion
 - Step 2 Sample the input
 - A to D Conversion takes a finite amount of time
 - What if the input changes during this time?
 - We must take a snapshot of the input → Sample and Hold

- N-bit Conversion
 - Step 1 Limit the input frequency range
 - Sampling is a kind of MODULATION
 - Modulation systems are subject to Aliasing
 - Fin < fs/2
 - Fs: Nyquist rate
 - → LPF the input (anti-aliasing filter)

- N-bit Conversion
 - Step 3 Convert to the digital value
 - Various methods can be used to do the conversion
 - Provide a reference voltage
 - Break the reference voltage into 2^N equal steps
 - Assign a digital value according to the number of steps required to reach the input

5V reference 10bit conversion \rightarrow 2¹⁰ steps = 1024 steps \rightarrow 5V/1024steps = 4.88mV/step

3.2V input \rightarrow 3.2V/4.88mV/step = 655.36steps \rightarrow 655 steps Output is: 655 in 10 bit binary \rightarrow 10 1000 1111 = 0x28F

© ti

Digital to Analog Conversion

- N-bit Conversion
 - Convert the digital value to an analog value
 - Various methods can be used to do the conversion
 - Provide a reference voltage
 - Break the reference voltage into 2^N equal steps
 - Assign an analog value according to the number of steps represented by the digital value

3.3V reference 8 bit conversion \rightarrow 2⁸ steps = 1256 steps \rightarrow 3.3V/256steps = 12.89mV/step

0xA2 input = 1010 0010 → 162 steps Output is: 162 steps * 12.89mV/step = 2.088V