Mixed Signal Design

Last updated 1/25/24

Mixed Signal Design

- Most of the real world is analog
- Temperature, pressure, voltage, current, ...
- To work with these values in a computer we must convert them to/from digital representations
- Analog to Digital Conversion
- Digital to Analog Conversion

Analog to Digital Conversion

- 1 bit conversion
- Rough conversion
- We know CMOS gates transition around VDD/2
- Use a resistor divider to convert the analog signal (desired switching level) to VDD/2

Analog signal ranges form 0 V to 5 V Want the switching point to be 2.5 V

Digital circuit runs at $3.3 \mathrm{~V}(\sim 1.65 \mathrm{~V}$ transition point)

Choose: $\mathrm{R} 2=50 \mathrm{~K} \Omega \rightarrow \mathrm{R} 1=26 \mathrm{~K} \Omega$

Analog to Digital Conversion

- N-bit conversion
- Break the analog signal into 2^{N} steps
- 3 steps in the conversion
- Limit the input frequency range
- Sample the input
- Convert to the digital value

Analog to Digital Conversion

- N-bit Conversion
- Step 2 - Sample the input
- A to D Conversion takes a finite amount of time
- What if the input changes during this time?
- We must take a snapshot of the input \rightarrow Sample and Hold

Analog to Digital Conversion

- N-bit Conversion

- Step 1 - Limit the input frequency range
- Sampling is a kind of MODULATION
- Modulation systems are subject to Aliasing
- Fin < fs/2
- Fs: Nyquist rate
$\rightarrow \quad$ LPF the input (anti-aliasing filter)

Analog to Digital Conversion

- N-bit Conversion

- Step 3 - Convert to the digital value
- Various methods can be used to do the conversion
- Provide a reference voltage
- Break the reference voltage into 2^{N} equal steps
- Assign a digital value according to the number of steps required to reach the input

5 V reference
10bit conversion $\rightarrow 2^{10}$ steps $=1024$ steps $\rightarrow 5 \mathrm{~V} / 1024$ steps $=4.88 \mathrm{mV} /$ step
3.2 V input $\rightarrow 3.2 \mathrm{~V} / 4.88 \mathrm{mV} /$ step $=655.36$ steps $\rightarrow 655$ steps

Output is: 655 in 10 bit binary $\rightarrow 1010001111=0 \times 28 \mathrm{~F}$

- N-bit Conversion

- Convert the digital value to an analog value
- Various methods can be used to do the conversion
- Provide a reference voltage
- Break the reference voltage into 2^{N} equal steps
- Assign an analog value according to the number of steps represented by the digital value

```
3.3V reference
8 bit conversion }->\mp@subsup{2}{}{8}\mathrm{ steps = 1256 steps }->3.3\textrm{V}/256\mathrm{ steps = 12.89mV/step
0xA2 input = 1010 0010 }->162\mathrm{ steps
Output is: }162\mathrm{ steps * 12.89mV/step = 2.088V
```

