Optimized State Diagrams

Last updated 7/18/23

Optimized State Diagrams

- Two formal approaches for optimization
- Successive Partitions
- Implication Chart

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

State	Input	Next State
A	0	B
A	1	C
B	0	D
B	1	F
C	0	F
C	1	E
D	0	B
D	1	G
E	0	F
E	1	C
F	0	E
F	1	D
G	0	F
G	1	G

State	Output
A	1
B	1
C	0
D	1
E	0
F	0
G	0

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States	Action
P0	ABCDEFG	
	1101000	

Identify states and outputs

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States	Action
PO	ABCDEFG	
1101000	Separate	

Partition into sets with same outputs

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States	Action
P0	ABCDEFG 1101000	Separate ABD, CEFG
P1	ABD	CEFG

Identify next states based on current state and inputs

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States	Action
PO	$\begin{aligned} & \text { ABCDEFG } \\ & 1101000 \end{aligned}$	Separate ABD, CEFG
$\begin{aligned} & \text { P1 } \\ & \text { ln=0 } \\ & \text { ln }=1 \end{aligned}$		Separate CEG and F

Separate those groups by current state

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States			Action
PO	ABCDEFG 1101000			Separate ABD, CEFG
$\begin{aligned} & \text { P1 } \\ & \mathrm{In}=0 \\ & \mathrm{ln}=1 \end{aligned}$	$\begin{aligned} & \text { ABD } \\ & \text { BDB } \\ & \text { CFG } \end{aligned}$			Separate CEG and F
$\begin{aligned} & \text { P2 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	$\begin{aligned} & \text { ABD } \\ & \text { BDB } \\ & \text { CFG } \end{aligned}$	$\begin{aligned} & \text { CEG } \\ & \text { FFF } \\ & \text { ECG } \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { E } \\ & \text { D } \end{aligned}$	

Identify next states based on current state and inputs

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |
| | | | |

Partitions	Next States			Action
PO	$\begin{gathered} \text { ABCDEFG } \\ 1101000 \end{gathered}$			Separate ABD, CEFG
$\begin{aligned} & \text { P1 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	$\begin{aligned} & \text { ABD } \\ & \text { BDB } \\ & \text { CFG } \end{aligned}$	$\begin{aligned} & \text { CEFG } \\ & \text { FFEF } \\ & \text { ECDG } \end{aligned}$		Separate CEG and F
$\begin{aligned} & \text { P2 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	$\frac{\uparrow}{\frac{\mathrm{ABD}}{\mathrm{BDB}}}$	$\begin{gathered} \text { CEG } \\ \text { FFF } \\ \hline \text { ECG } \end{gathered}$	$\begin{gathered} F \\ \text { E } \\ \text { D } \end{gathered}$	Separate $A D$ and B
	Identify any groups of next states that are not part of an existing partition			

Separate those groups by current state

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | O | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | O | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States		Action	
P0	ABCDEFG 1101000			Separate

Identify next states based on current state and inputs

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |
| | | | |

Partitions	Next States			Action
PO	$\begin{gathered} \text { ABCDEFG } \\ 1101000 \end{gathered}$			Separate ABD, CEFG
$\begin{aligned} & \text { P1 } \\ & \text { In }=0 \\ & \text { In }=1 \end{aligned}$	Identify any groups of next states that are not part of an existing partition			eparate EG and F
$\begin{aligned} & \text { P2 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	parate those gro BDB CFG	y curre FFF ECG	$\begin{gathered} \text { tate } \\ \mathrm{E} \\ \mathrm{D} \end{gathered}$	Separate $A D$ and B
$\begin{aligned} & \text { P2 } \\ & \ln =0 \\ & \ln =1 \end{aligned}$	$A D$ B BB B $C G$ F	$\begin{gathered} \text { CEG } \\ \text { FFFF } \\ \hline \text { ECG } \end{gathered}$	$\stackrel{F}{\mathrm{~F}} \mathrm{C}$	No more reduction

Optimized State Diagrams

- Redundant / Equivalent States
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | O | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Partitions	Next States				Action
PO	$\begin{gathered} \text { ABCDEFG } \\ 1101000 \end{gathered}$				Separate ABD, CEFG
$\begin{aligned} & \text { P1 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	$\begin{aligned} & \text { ABD } \\ & \text { BDB } \\ & \text { CFG } \end{aligned}$		$\begin{aligned} & \text { CEFG } \\ & \text { FFEF } \\ & \text { ECDG } \end{aligned}$		Separate CEG and F
$\begin{aligned} & \text { P2 } \\ & \text { ln }=0 \\ & \text { ln }=1 \end{aligned}$			$\begin{gathered} \text { CEG } \\ \text { FFF } \\ \text { ECG } \end{gathered}$	$\begin{aligned} & \text { F } \\ & \text { E } \\ & \text { D } \end{aligned}$	Separate $A D$ and B
$\begin{aligned} & \text { P2 } \\ & \text { In }=0 \\ & \text { ln }=1 \end{aligned}$	$A D$ BB CG	$\begin{aligned} & \text { B } \\ & \text { D } \\ & \text { F } \end{aligned}$	$\begin{gathered} \text { CEG } \\ \text { FFF } \\ \text { ECG } \end{gathered}$	$\begin{aligned} & \text { F } \\ & \text { E } \\ & \text { D } \end{aligned}$	No more reduction
Pfinal	AD	B	CEG	F	

Optimized State Diagrams

- Redundant / Equivalent State
Partitions
PO
- Successive Partitions

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | |
| G | 0 | F | 0 |
| G | 1 | G | 0 |
| | | 0 | |

7 states $\rightarrow 4$ states

$P 1$
In $=0$
In $=1$
$P 2$
$\ln =0$
$\ln =1$
$P 2$
In $=0$
In $=1$
Pfinal
Output
1

State	Input	Next State	Output
AD	0	B	1
AD	1	CEG	1
B	0	AD	1
B	1	F	1
CEG	0	F	0
CEG	1	CEG	0
F	0	CEG	0
F	1	AD	0

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{P} | 0 | Q | 1 |
| \mathbf{P} | 1 | R | 1 |
| Q | 0 | P | 1 |
| Q | 1 | S | 1 |
| R | 0 | S | 0 |
| R | 1 | R | 0 |
| S | 0 | R | 0 |
| S | 1 | P | 0 |

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

State	Input	Next State	Output
A	0	B	1
A	1	C	1
B	0	D	1
B	1	F	1
C	0	F	0
C	1	E	0
D	0	B	1
D	1	G	1
E	0	F	0
E	1	C	0
F	0	E	0
F	1	D	0
G	0	F	0
G	1	G	

compare pairs of states If outputs are different X out box

Optimized State Diagrams

- Redundant / Equivalent States

- Implication Chart

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | |
| G | 1 | G | 0 |
| | | | |

write in the implicants to all empty boxes The two states would be the same IFF the implicants are the same

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

State	Input	Next State	Output
A	0	B	1
A	1	C	1
B	0	D	1
B	1	F	1
C	0	F	0
C	1	E	0
D	0	B	1
D	1	G	1
E	0	F	0
E	1	C	0
F	0	E	0
F	1	D	0
G	0	F	0
G	1	G	0

Traverse the structure and X out any boxes whose implicants are already X'd out This indicates the implicant is not true

A B C D E F G

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

State	Input	Next State	Output
A	0	B	1
A	1	C	1
B	0	D	1
B	1	F	1
C	0	F	0
C	1	E	0
D	0	B	1
D	1	G	1
E	0	F	0
E	1	C	0
F	0	E	0
F	1	D	0
G	0	F	0
G	1	G	0

Traverse the structure and X out any boxes whose implicants are already X'd out This indicates the implicant is not true

A B C D E F G

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

State	Input	Next State	Output
A	0	B	1
A	1	C	1
B	0	D	1
B	1	F	1
C	0	F	0
C	1	E	0
D	0	B	1
D	1	G	1
E	0	F	0
E	1	C	0
F	0	E	0
F	1	D	0
G	0	F	0
G	1	G	0

Traverse the structure and X out any boxes whose implicants are already X'd out This indicates the implicant is not true

$A B C D E F G$

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

Remaining un-X'd boxes indicate equivalent states

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Any duplicate entries indicate independent states

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

| State | Input | Next
 State | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | B | 1 |
| A | 1 | C | 1 |
| B | 0 | D | 1 |
| B | 1 | F | 1 |
| C | 0 | F | 0 |
| C | 1 | E | 0 |
| D | 0 | B | 1 |
| D | 1 | G | 1 |
| E | 0 | F | 0 |
| E | 1 | C | 0 |
| F | 0 | E | 0 |
| F | 1 | D | 0 |
| G | 0 | F | 0 |
| G | 1 | G | 0 |

Optimized State Diagrams

- Redundant / Equivalent States
- Implication Chart

State	Input	Next State	Output	7 states $\rightarrow 4$ states			
A	0	B	1				
A	1	C	1				
B	0	D	1				
B	1	F	1				
C	0	F	0	State	Input	Next	Output
C	1	E	0	AD		State	
D	0	B	1		0	B	1
D	1	G	1	AD	1	CEG	1
E	0	F	0	B	0	AD	1
E	1	C	0	B	1	F	1
F	0	E	0	CEG	0	F	0
				CEG	1	CEG	0
F	1	D	0				
G	0	F	0	F	0	CEG	0
G	1	G	0	F	1	AD	0
ELE 3510						23	

- Design Process Circuit Design

1) Identify the states - collectively these make a state variable
2) Identify the Inputs and Outputs
3) Assign values for each input/output (encoding)
4) Create a state transition diagram / table
5) Optimize the state transition table
6) Assign values for the state variable for each state (encoding)
7) Create truth tables for the combinational logic blocks in the machine model: next state, output
8) Minimize the next state and output equations using K-maps or Boolean Algebra techniques
9) Draw the circuit schematic
10) Verify the solution
11) Build the physical circuit
12) Test the physical circuit to ensure correct operation

- Design Process HDL

1) Identify the states - collectively these make a state variable
2) Identify the Inputs and Outputs
3) Create a state transition diagram / table
4) Optimize the state transition table
5) Create the HDL to match the state transition table
6) Choose an encoding scheme (or let the tool decide)
7) Synthesize the design
8) Verify the solution
9) Build the physical circuit
10) Test the physical circuit to ensure correct operation
